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Resumo

TRIANI, Tarcio de Sampaio. Sistema de inferéncia fuzzy para estimativa da
umidade do solo sob influéncia do teor de matéria organica. 2015. 70p.
Dissertacdao (Mestrado em Modelagem Matemdtica e Computacional).
Instituto de Ciéncias Exatas, Universidade Federal Rural do Rio de Janeiro,
Seropédica, RJ, 2015.

O estudo da dinamica da dgua no solo tem sido crescente frente a necessidade
de otimizagdo de uso de recursos hidricos para a manutengao da produtividade
agricola. Como forma de auxiliar esse estudo, diferentes modelos de dindmica
da dgua no solo tém sido criados e estudados, em uma tentativa de se prever
situagOes que empiricamente se tornam demoradas e custosas. A dindmica da
agua no solo esta associada diretamente a parametros fisico-hidricos do solo,
assim como a umidade do solo. Para se determinar a umidade do solo existem
técnicas que necessitam de uma grande quantidade de amostragens, elevando o
custo e o tempo necessario para realizar tais medigoes. Este trabalho da
continuidade 2 dissertacio de Belleza. E elaborado um modelo baseado em
regras fuzzy para estimar a umidade em camadas superficiais do solo a partir de
dados de textura do solo, potencial matricial e quantidade de matéria orgénica.
A distin¢do e andlise feitos pelo modelo recaem sobre a influéncia da matéria
organica sobre a reten¢ao de umidade pelo solo, desconsiderada pela maioria
dos trabalhos deste tipo. O conjunto de dados utilizado para treinamento e
valida¢do do modelo € proveniente de um projeto de pesquisa realizado na
regido amazoOnica, organizado em relatorio financiado pela Petrobras. Os
resultados, obtidos através de simulacdo realizada no software Matlab,
demonstram que a matéria organica possui grande influéncia na reten¢do de
umidade por solos cujo teor de argila esteja abaixo de 35%. E observada uma
reducdo significativa do erro absoluto médio total em relacdo ao trabalho de
Belleza, que desconsidera a influéncia da matéria organica. O aumento do
numero de regras do sistema de inferéncia fuzzy permite também uma melhor
aproximacao das estimativas do valor real de umidade. Levando em conta as
incertezas inerentes ao fendmeno este modelo € considerado adequado devido
a sua simplicidade e média de erros relativamente baixa, e uma evolu¢ao no
campo da modelagem da estimativa de umidade do solo por légica fuzzy.



Abstract

TRIANI, Tércio de Sampaio. Fuzzy inference system for estimating the soil
moisture under the influence of organic matter content. 2015. 70p.
Dissertation (Mastert’s degree in Computacional and Mathematical Modeling).
Instituto de Ciéncias Exatas, Universidade Federal Rural do Rio de Janeiro,
Seropédica, RJ, 2015.

The study of soil water dynamics has been growing across the need to optimize
the use of water resources for the maintenance of agricultural productivity. In
order to assist this study, different models of soil water dynamics has been
created and studied in an attempt to predict situations that empirically become
time-consuming and expensive. The soil water dynamics is directly associated
with physical and hydric parameters, as well as the soil moisture. To determine
the soil moisture, there are techniques that require a large amount of samples,
increasing the cost and time required to perform such measurements.This work
continues the dissertation of Belleza. A model based on fuzzy rules to estimate
the moisture in topsoil from soil texture data, matric potential and amount of
organic matter is elaborated. The distinction and analysis made by the model
fall under the influence of organic matter on the soil water retention,
disregarded by most studies of this type. The data set used for training and
validation of the model comes from a research project conducted in the
Amazon region, organized in a report funded by Petrobras. The results,
obtained by simulation performed in the software Matlab, show that the
organic matter has great influence in soil water retention of soils which clay
content is under 35%. A significant decrease of total mean error in relation
with the work of Belleza, which ignores the influence of organic matter, is
observed. The increase in the number of the fuzzy inference system rules also
allow a better approximation of the estimated values to the real moisture
values. Taking into account the uncertainties inherent to the phenomenon this
model is considered appropriate, due to its simplicity and relatively low
average of errors, and an evolution in the field of modeling the soil moisture
estimation by fuzzy logic.
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1 Introducao

De toda 4dgua presente na superficie terrestre, cerca de 2,5% ¢é de dgua doce e apenas 0,3%
destes se encontram em rios e lagos, representando a parte disponivel para consumo
(REICHARDT e TIMM, 2004). Na América do Sul, o pais que mais detém mananciais de
agua doce € o Brasil, com 53%. De acordo com a atual Conjuntura de Recursos Hidricos do
Brasil (CRH), de 2013, realizada pela Agéncia Nacional de Aguas (ANA), cerca de 80% da
agua doce do Brasil se encontra na bacia Amazonica, atendendo a pouco mais de 5% da

populacdo brasileira.

Com a possibilidade real de uma crise hidrica nacional, é iminente uma preocupagdo com o
uso e disponibilidade da dgua. A frequente falta de chuvas e diminui¢@o dréstica dos niveis dos
reservatérios de dgua na regido sudeste estdo gerando discussdes sobre o desperdicio de dgua
no Brasil. Dados da ANA de 2007 j4 indicavam que 40% da dgua retirada no Brasil era
desperdicada, sendo metade desse desperdicio devido  irrigagio (AGENCIA BRASIL, 2007).
Uma anlise mais recente (AGENCIA NACIONAL DE AGUAS, 2013) aponta que de 2006 a
2010 houve um aumento de aproximadamente 29% da retirada total de 4gua dos manaciais
brasileiros. Esse aumento € devido, principalmente, a atividade de irrigagdo, cuja vazio de
retirada aumentou de 46%, em 2006, para 54%, em 2010. Da vazio total efetivamente
consumida, 72% € devida a irrigacdo e o restante para fins de abastecimento urbano, industrial,

animal e populagdo rural.

O estudo da dinamica da 4gua no solo tem sido crescente frente a necessidade de otimizagao
de uso de recursos hidricos para a manutengio da produtividade agricola. E preciso haver um
controle, pois a falta de d4gua leva a morte das plantas, enquanto que o seu excesso ocasiona
saturacdo do solo, falta de oxigenacdo das plantas e drenagem de nutrientes do solo, além do

desperdicio de dgua.

A 4gua do solo ocupa os espacos ndo ocupados pelas particulas sélidas do solo. Este espago é
denominado espago poroso do solo. Quando este espaco poroso ndo estd totalmente cheio de
dgua ele também € ocupado por ar, e o solo € dito estar nao saturado. Caso contrério, o solo é

dito estar saturado (LIBARDI, 2014). Como qualquer corpo na natureza, a agua é



caracterizada por um estado de energia potencial e diferengas nos valores destes potenciais
fazem com que a 4gua se movimente pelo solo. O estudo desse movimento da dgua, bem como
dos processos que influenciam esse movimento, € também denominado de estudo da dindmica

da dgua no solo.

A dindmica da 4gua no solo estd associada diretamente a parametros fisico-hidricos do solo
(SOUZA, 2007), cujas estimativas, como serd visto no capitulo seguinte, sdo dificeis de serem
realizadas. Outro fator importante que estd diretamente ligado a dindmica de dgua no solo € a
umidade, ou seja, a quantidade de dgua existente em uma unidade de massa ou volume de solo.

Para se determinar a umidade do solo existem técnicas que necessitam de uma grande
quantidade de amostragens do solo (BIASSUSI, 2001). Portanto, o custo e o tempo necessario

para realizar tais medi¢des sdo elevados.

Uma importante ferramenta utilizada na determinacdo da umidade em solos ndo saturados € a
curva de retencio de umidade do solo, fundamental na caracterizagdao das propriedades
hidrdulicas do solo (CICHOTA & VAN LIER, 2004). Esta curva associa o teor de d4gua no solo
a energia potencial com que ela estd retida, ou seja, indica a capacidade do solo em armazenar
agua. Para da Silva et al. (2006) a determinagdo da curva de retencao de dgua no solo é
essencial no estudo das relagdes solo-dgua. Mais ainda, Ottoni (2009) avalia a importancia
desta curva como uma forma de subsidio para a modelagem hidrolégica e um meio de poder

identificar de forma quantitativa a capacidade de armazenamento de dgua pelo solo.

Para a obtencdo da curva de retenc@o de dgua no solo, tradicionalmente, utiliza-se o método
empirico denominado Camara de Pressao de Richards. Algumas dificuldades deste método sao
o tempo de determina¢@o do ponto de equilibrio entre a pressao aplicada e a dgua retida no
solo, o longo tempo exigido para as medidas e o alto custo do equipamento (TAVARES,
FELICIANO e VAZ, 2007).

Como auxilio as andlises da dindmica da 4gua no solo e a previsdo da capacidade de
armazenamento de dgua pelo solo surgiram alguns modelos matematicos, considerados
deterministicos, em func¢do do tipo de parametros de entrada e das informacdes de saida.
Dentre eles estdo as cldssicas equacdo de Richards e a equacdo de van Genuchten (descritas na
secdo 2.4). A primeira modela o fluxo de 4gua no solo e a segunda estima a umidade do solo.
Entretanto, para Souza (2007), o maior desafio para utilizar modelos numéricos
deterministicos para fendmenos deste tipo estd no fato de que o sucesso desses modelos

depende da precisao com que os parametros sdo determinados.

Conforme Halkidis (2009) afirma, os parametros envolvidos em fendmenos naturais nao

podem ser medidos de forma precisa, afetando, por isso, o desempenho dos modelos



numéricos. A criagdo de modelos probabilisticos (estocdsticos ou estatisticos) e modelos
baseados em ldgica fuzzy, elaborada pelo matemético Zadeh (1965), foram algumas das
alternativas encontradas para contornar este problema. Estes dois tipos de modelo possuem
conceitos parecidos (descrevem a incerteza com nimeros entre 0 e 1) mas, em seu significado,

sao diferentes.

Para a teoria probabilistica, o evento considerado estd muito bem definido e a unica davida é
sobre a sua ocorréncia (ORTEGA, 2001). Com a ocorréncia do evento, a divida ja ndo existe.
Como exemplo, ao lancar um dado € facil verificar a probabilidade de sair determinado
numero. Entretanto, ao se verificar o nimero apds o lancamento do dado, ndo ha mais
incerteza sobre o evento considerado no momento. Agora imagine uma urna que possua varias
bolas com diferentes tons de rosa, variando do branco ao vermelho. E dificil verificar a chance
de sortear uma bola rosa, uma vez que havera dificuldade em decidir se a bola € rosa ou néo.
Para estes casos de incerteza, a teoria fuzzy € a mais indicada, pois ela lida com graus de
pertinéncia de um objeto a um conjunto, tal qual decidir se a bola sorteada no exemplo possui

um tom 60% rosado.

Neste sentido, a teoria fuzzy determina o grau em que um evento ocorre € nao se ele ocorre,
enquanto que a aleatoriedade determina a incerteza da ocorréncia do evento, se ele ocorre ou

ndo (KOSKO, 1990).

Uma outra questio que diferencia estas duas teorias € a subjetividade. A teoria probabilistica
nao a considera. Como exemplo, tome um conjunto de pessoas de diferentes alturas e verifique
a probabilidade de se sortear uma pessoa alta. Para a teoria probabilistica, este evento precisa
ser melhor definido, pois em relagdo a uma pessoa com 2,00 m uma pessoa que tenha 1,80 m

pode ser considerada baixa.

Em fisica do solo, a maioria dos eventos, tal como verificar a umidade do solo, sdo incertos
mesmo apds a verificagdo do resultado. Isto porque existe a possibilidade de erros de medi¢ao
por parte humana ou até mesmo as imprecisdes dos fatos considerados na hora de obter as
estimativas. Por este motivo, a teoria fuzzy € considerada neste trabalho, assim como foi em

outros trabalhos pesquisados relacionados a seguir.

Souza (2007) utiliza a 16gica fuzzy na modelagem da dindmica da 4gua e transporte de solutos
(Potassio) em uma coluna de solo ndo saturado. O conjunto de dados utilizado para analise e
formacdo do modelo foi obtido a partir de simulacdo numérica da equacao de Richards pelo

software HYDRUS-2d®. A validacdo deste modelo foi feita com dados experimentais obtidos
em laboratorio. Os resultados mostraram que o modelo € pouco eficiente em comparacdo aos

dados experimentais, com erros relativos muito altos. Porém, em comparacado aos dados



obtidos pelo software HYDRUS-2d®, 0 modelo se mostrou uma ferramenta eficaz na

descricdo dos processos.

Afonso, Netto e Vasconcelos (2014) recorrem a 16gica fuzzy para a construgao de um modelo
alternativo para descrever o fluxo de 4gua em um solo ndo saturado. As varidveis consideradas
no modelo sdo as umidades verificadas nas camadas de solo adjacentes a camada em que se
esta verificando o fluxo de dgua. Os dados utilizados como base para o modelo foram
coletados experimentalmente, na regido nordeste do Brasil. A capacidade do modelo em
reproduzir os resultados experimentais foi considerada satisfastéria, com erro quadratico

médio de 0,0092 e erros relativos abaixo de 1,5%.

Bardossy e Disse (1993) apresentam dois modelos baseados em 16gica fuzzy para o processo
de infiltracdo de dgua no solo. Os dados para construcdo dos modelos foram gerados a partir
de simulacdes com a equacao de Green e Ampt, que descreve a infiltragdo ao longo do tempo,
e a equacdo de Richards, para fluxo vertical de 4gua. Em seus resultados, as estimativas
obtiveram erros baixos, e os autores citam a légica fuzzy como uma alternativa vantajosa, visto
que possuem menos parametros que as equagdes classicas. Tzimopoulos et al. (2008)
modelam, também, a infiltracdo de 4gua no solo, porém, a partir do modelo de Parlange,

obtendo resultados muito préximos dos valores coletados.

Lima et al. (2010) fazem uso de um sistema de controle baseado em regras de l6gica fuzzy para
definir o momento certo de irrigacdo. Para isto, o controlador leva em conta dados de varidveis
ligadas a umidade do solo, fluidez da dgua no solo e pressdo utilizada nos mecanismos de
irrigacdo. Como resultado obteve-se um sistema que permite uma melhor produtividade
agricola, economia com gastos operacionais, ja que o sistema € automatico, e facil adaptacdo a

novas necessidades préticas, visto que o mesmo ¢é baseado em regras linguisticas.

Belleza (2014) propde um sistema de inferéncia fuzzy para estimar a umidade do solo a partir
de dados de potencial matricial e textura do solo. Os dados utilizados para construcao e
validacao do controlador foram obtidos de um relatério de dados coletados na regidao
amazonica. O erro absoluto médio verificado para o conjunto de 11 dados de validacao foi de

2,1%.

O presente trabalho propde um modelo de base de regras fuzzy para estimar a umidade em
camadas superficiais do solo. As varidveis consideradas para o modelo foram textura do solo,
potencial matricial e quantidade de matéria organica. Esta tltima varidvel ndo foi considerada

por Belleza (2014), cujo trabalho auxiliou a elaboracao deste modelo.

A matéria organica do solo se constitui de compostos organicos de origem vegetal ou animal e



se deposita nas camadas superficiais do solo. Apesar de ndo ser normalmente considerada em
modelos de dindmica da dgua no solo, ela possui importante influéncia na retengdo de umidade
pelo solo, pois age de formas direta e indireta sobre as caracteristicas fisicas e fenomenos

fisicos e quimicos do solo ligados a retencao de dgua (BRAIDA et al., 2011).

Com a introdu¢do da matéria organica nas andlises de retenc¢do de d4gua no solo, pretende-se
melhorar os resultados do modelo, realizando uma nova andlise dos dados para a formacgao das

regras do sistema de inferéncia fuzzy e defini¢do dos intervalos das varidveis de entrada e saida.

Os dados utilizados para formagao e validacdo do modelo foram obtidos junto ao projeto
intitulado “Erosdo Hidrica em Solos Amazonicos”. Tal projeto € resultado de convénio entre a
Petrobras SA, a UFRRJ e a FAPUR (Fundacdo de Apoio a Pesquisa Cientifica e Tecnoldgica
da UFRRIJ) e estd publicado em Petrobras (2010). As pesquisas do projeto citado foram
situadas no municipio de Coari, em Manaus, AM. Para simulagdo dos resultados foi utilizado o
toolbox para fuzzy disponibilizado em MATLAB®, em cooperacio do prof. Dr. Jodo Frederico
Costa de Azevedo Meyer, do Departamento de Matemaética Aplicada da Unicamp, SP.

No capitulo 2, a fisica do solo, a dindmica da d4gua no solo e a influéncia que a matéria
organica tem na retencdo de umidade pelo solo sdo discutidos mais profundamente. Ainda, sd@o
relacionados os modelos matematicos deterministicos cldssicos que estimam a dinamica da

agua no solo e a retencdo de umidade.

No capitulo 3 s@o apresentados os conceitos que envolvem a légica fuzzy, base para o modelo

construido nesse trabalho.

O capitulo 4 apresenta a metodologia para construcdo do sistema de inferéncia fuzzy para
estimar a umidade volumétrica do solo, com descri¢do dos dados observados para treinamento

do modelo.

No capitulo 5 os resultados do modelo proposto sdo apresentados, com simula¢do numérica
através do software Matlab®, e é feita uma comparaciio com os resultados apresentados por
Belleza (2014).

No capitulo 6 € feita a conclusdo da evolucao do modelo e dos resultados obtidos.



2  Dindmica da dgua no solo

2.1 Osolo

Definido por Santos et al. (2005) como “uma colecio de corpos naturais independentes
constituidos de materiais minerais e organicos organizados em camadas resultantes da acao de
fatores de formacao”, o solo possui importancia essencial para a produgdo vegetal.
Funcionando como um reservatdrio de dgua para as plantas, elemento primordial para o seu

desenvolvimento, o solo retém dgua e fornece-a conforme as necessidades dos vegetais.

A formacdo de um solo € originada por processos quimicos, fisicos e biolégicos de
decomposicao, desintegracdo e recombinagdo da rocha matriz, sendo cinco os fatores
responsaveis por essa formagdo: o material original, o tempo, o clima, o relevo e os

organismos vivos (LEPSCH, 2010).

O material original compreende o material geolégico do qual o solo se origina. Por este
motivo, as caracteristicas e propriedades de um solo dependem da composi¢ao do material
original do solo. O tempo refere-se a idade do solo, fator necessério para a ocorréncia das

acoes fisicas e reacdes quimicas que o transformam. A principal consequéncia do tempo na
formacdo dos solos € a sua espessura. O clima refere-se, principalmente, as acdes da umidade
(precipitacdes pluviométricas) e temperatura e, por isso, 0s solos apresentam caracteristicas e
propriedades diferentes para cada clima. Quanto ao relevo, podemos considerar a topografia
do local (diferencas de altitude, formato, declividade e posi¢cdo do terreno), que interfere na
distribui¢do desigual da dgua da chuva, da luz, do calor do sol e da erosao no terreno. Por
ultimo, os organismos presentes no solo promovem a diferenciacdo de alguns solos através da

decomposicao dos restos de vegetais e animais (LEPSCH, 2010).

Os diferentes fatores e processos de formacao do solo atribuem-no caracteristicas e
propriedades quimicas e fisicas proprias, diferenciando diversos tipos de solo e influenciando

no fornecimento de 4gua e minerais para o desenvolvimento das plantas (LEPSCH, 2010).

Dentre as caracteristicas fisicas do solo podem ser citadas:



Cor E o produto da mistura das cores das particulas do solo. E considerada como uma das
caracteristicas morfoldgicas mais importantes, pois além de ser facilmente visivel, per-
mite uma boa caracteriza¢ao do solo (CEDDIA, 2013). Alguns solos recebem, inclusive,

nomenclatura de acordo com a sua cor, como a “terra roxa” e a ‘“‘terra preta”.

Textura A textura de um solo refere-se a proporcao relativa das particulas sélidas que com-
pdem a massa do solo. Os principais constituintes minerais dessas particulas sdo a areia,
o silte e a argila. A combinacdo desses constituintes exerce influéncia direta sobre as-
pectos de retencao de umidade pelo solo. Mais adiante a textura do solo e sua influéncia
na retencao de umidade sdo explicadas de forma aprofundada, visto que € parte essencial

deste trabalho.

Estrutura Representa o padrdo de arranjamento das particulas primdrias do solo (areia, silte
e argila) em unidades estruturais compostas chamadas de agregados (SANTOS et al.,
2005). Os agregados sao considerados particulas secunddrias, formadas a partir da agre-

gacdo das particulas primadrias.

Consisténcia E o termo usado para designar as manifestacdes das forcas fisicas de coesdo
(entre particulas do solo) e de adesdo (entre as particulas do solo e de outros materiais)
agindo dentro do solo em diferentes graus de umidade (CEDDIA, 2013). As particulas do
solo, no interior dos agregados, aderem umas as outras e sdo mantidas dessa forma com
maior ou menor grau de adesdao. Essa unido confere aos agregados um aspecto duro ou
macio. A resisténcia do material do solo, em seu estado natural, a alguma for¢a que tende
a rompe-los é conhecida como consisténcia do solo (LEPSCH, 2010), e é determinada

em trés estados de umidade: solo seco, umido e saturado.
Ja entre algumas das caracteristicas quimicas do solo podem ser citadas:

pH Indica a acidez de um solo. Quanto mais abaixo de 7 for o pH, mais 4cido serd o solo.
E quanto mais acima de 7, ele serd alcalino. O pH de um solo pode variar de acordo
com a sua composicao, concentracdo de metais, sais minerais, dcidos, bases e material
organico. O valor ideal do pH de um solo destinado a agricultura depende da cultura que

serd utilizada, pois cada cultura possui valores de pH diferentes de adaptacao.

Quantidade de hidrogénio Assim como o pH, determina a acidez do solo. Quanto maior o

teor de Hidrogénio, menor o pH, e logo, maior serd a acidez.

Capacidade de troca cationica (CTC) Cations sao ions que possuem déficit de elétrons e, por

1ss0, possuem carga predominantemente positiva. No solo, eles sdo formadores de cargas



positivas que podem ser trocados por outros cations. A CTC representa o nimero total
de cétions que o solo pode reter. Portanto, depende da quantidade de cargas negativas
presentes. Quanto maior for a quantidade de cargas negativas no solo, maior serd sua
CTC. A importancia da CTC para o solo estd ligada a retencdo de dgua e estruturagcdo e

consisténcia do solo.

Matéria Organica Indica a fracio do solo composta de material de origem vegetal ou animal,
em diferentes estdgios de decomposi¢do. Mais adiante, ao longo deste capitulo, sera
aprofundado o conceito de matéria organica e explicitada a sua influéncia na retencao de

umidade do solo.

O solo € considerado como um sistema trifasico, pois se constitui das fracdes solida (material
mineral e organico), liquida (solu¢do de sais minerais € componentes organicos) e gasosa (ar
do solo, que ocupa o espaco entre as particulas s6lidas ndo ocupado pela fracao liquida).
Costuma-se denominar de matriz do solo os constituintes da fracao sélida do solo. O espago

nao ocupado pelas particulas sélidas do solo € denominado de espago poroso.

Parte da fracdo so6lida de um solo € constituida de compostos organicos de origem animal ou
vegetal, nos mais diversos estdgios de transformacdo (decomposi¢do). A esta composi¢ao do
solo dé-se o nome de matéria orgdnica do solo. O estagio mais avancado de transformacgdo da
matéria organica € denominado himus, formado pela acdo de microorganismos nativos do
solo. As caracteristicas principais do hiimus sdo: estado coloidal (de tamanho menor que 1

micrdmetro), cor escura e alta estabilidade no solo (REICHARDT e TIMM, 2004).

Com a transformacao do material original (rocha matriz) em solo, uma série de camadas
superpostas se torna visivel a partir de um corte vertical no solo. Essas camadas sao

denominadas horizontes do solo, e juntas elas formam o que chamamos de perfil do solo.

Segundo Lepsch (2010),

“...para identificar e delimitar os horizontes, na face exposta do perfil do solo,
em uma trincheira ou talude de estrada, primeiramente sao observadas as dife-
rencas maiores de cor, textura, estrutura, ou consisténcia, e outras caracteristi-

EX]

cas .

Um solo completo é formado por 4 horizontes principais - A, B, C e R - que podem ainda ser
subdivididos em novos horizontes a partir de suas caracteristicas fisicas e quimicas, e ainda um

horizonte superficial O. A figura 2.1 ilustra os horizontes principais de um solo.

O horizonte O constitui-se de acimulo de matéria organica total ou parcialmente decomposta.

Ocorre, geralmente, em solos de mata ou em solos organicos (LEPSCH, 2010).



Figura 2.1: Esquema de perfil de um solo 2. O horizonte R situa-se na camada inferior ao
horizonte C.

O horizonte A, camada mais superficial do solo, € também denominado horizonte de
eluviacdo, pois a acdo das chuvas faz com que esta camada perca coloides minerais (Ferro,
Aluminio e argila) para o horizonte B (IBGE, 2007). Outra caracteristica € a cor escura devido
ao acimulo de matéria organica. As subdivisdes deste solo que cabem citar aqui sdo: horizonte
AB, superficial, com predominio de caracteristicas de horizonte A e algumas caracteristicas de
horizonte B; horizonte AC, que possui, predominantemente, caracteristicas de A e algumas

caracteristicas do horizonte C. Este ultimo ocorre na auséncia de horizonte B.

O horizonte B é também denominado de horizonte de iluviagdo, ja que recebe os coloides
minerais provenientes do horizonte A, e apresenta maximo desenvolvimento de cor e estrutura.
E considerado um horizonte subsuperficial. Dentre as suas subdivisdes podem ser citados os
horizontes BA, que possui, predominantemente, as caracteristicas do horizonte B, mas também
possui caracteristicas do horizonte A, e o horizonte BC, que possui, predominantemente,

caracteristicas do horizonte B, e também caracteristicas do horizonte C.

O horizonte C é a camada do solo com mais caracteristicas da rocha matriz e o horizonte R € a

rocha matriz propriamente dita, situada na camada mais profunda do solo.

As particulas sélidas do solo podem variar enormemente de tamanho e qualidade
(REICHARDT e TIMM, 2004), podendo ser vistas a olho nu ou somente com o auxilio de um
microscopio. Existem diferentes escalas para classificacio das particulas do solo segundo o

seu diametro. A tabela 2.1 indica as classificacdes para a escala Atterberg e para a escala

Fonte: http://upload.wikimedia.org/wikipedia/commons/c/cc/Soil_profile.jpg. Acesso em 05 jan. 2015.
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americana, também adotada pela Sociedade Brasileira de Ciéncia do Solo (SBCS)
(REICHARDT e TIMM, 2004).

Tabela 2.1: Escalas de classificacdo granulométrica do solo

Escala de Atterberg Escala americana

Fracgao Diametro médio Diametro médio
Calhaus 20 a 200 mm > 75 mm
Cascalho 2 a20 mm 2a75 mm

Areia 0,02 a2 mm 0,05 a2 mm
Silte 0,002 a 0,02 mm 0,002 a 0,05 mm
Argila <0,002 mm < 0,002 mm

Tradicionalmente, as Unicas fragdes consideradas para a definicao da textura de um solo sdo as
fragOes de areia, silte e argila (REICHARDT e TIMM, 2004). A identificacdo da classe
textural de um solo pode ser feita graficamente através do triangulo textural, indicado na figura
2.2. Por exemplo, um solo que possui 60% de areia, 10% de silte e 30% de argila se classifica,
segundo o tridngulo textural da figura 2.2 como de textura franco-argilo arenosa. Essa leitura é
feita da seguinte forma: para a porcentagem indicada de areia, 60%, saem duas linhas das
quais deve ser considerada a da esquerda. Em seguida considera-se o valor da porcentagem de
silte, 10%, e a linha diagonal que sai desse valor, marcando o ponto de encontro desta com a
linha anterior, considerada na porcentagem de areia. A linha que sai desse ponto, a esquerda,
deve indicar a porcentagem de argila verificada. A regido deste ponto indica a classificacdo

textural do solo considerado.

Embrapa (2006) cita a existéncia de grupamentos texturais, que sdo a reunido de uma ou mais
classes de textura. Neste caso, cabe citar os cinco grupamentos texturais: arenosa, média,
argilosa, muito argilosa e siltosa. Neste trabalho, os grupamentos texturais foram considerados
conforme o percentual de argila, assim como em Belleza (2014), em adaptacdo possivel aos
critérios verificados na primeira referéncia citada. Assim, os grupamentos texturais

considerados foram:

Textura arenosa: teor de argila menor que 15%

Textura média: teor de argila entre 15% e 35%

Textura argilosa: teor de argila entre 35% e 60%

Textura muito argilosa: teor de argila maior que 60%
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Figura 2.2: Tridngulo de classificacdo textural (adaptado de Santos et al. (2005)).

A formacdo desses grupamentos texturais significa uma simplifica¢do do tridngulo textural

considerado anteriormente e estd indicada graficamente na figura 2.3.
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Figura 2.3: Triangulo de classificacdo textural simplificada proposto em EMBRAPA (2006).
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2.2 Movimento da agua no solo

Como qualquer corpo na natureza, a 4gua pode ser caracterizada por um estado de energia.
Diferentes formas de energia podem determinar esse estado (REICHARDT e TIMM, 2004). O
ramo da fisca que estuda as relacdes energéticas (movimento de energia) num processo fisico
que envolve um sistema (objeto que estd sendo estudado) e um meio (tudo o que circunda o
sistema e que com ele pode interagir) € a termodinamica. No caso da dindmica da dgua no
solo, o sistema € a dgua, incluindo fons, moléculas e gases dissolvidos, e o0 meio é a matriz do

solo e os gases do ar do solo.

As relagdes energéticas podem ser mecanicas (cinética e potencial) ou térmicas, sendo a
primeira em virtude da a¢do de for¢as que dao origem ao trabalhos mecanicos e a segunda por
diferencas de temperatura (REICHARDT e TIMM, 2004). A energia cinética de um corpo
deve-se a sua velocidade instantdnea em relacdo a um campo de forcas (LIBARDI, 2005).
Como a dgua se move a velocidades baixas pelo solo, sua energia cinética, que € proporcional
ao quadrado de sua velocidade, pode ser considerada desprezivel (HILLEL, 1998). Ja a
energia potencial da d4gua, funcdo de sua posicao e condi¢des internas, é de grande importancia

para a determinacdo do seu estado energético no solo.

A funcao termodinamica Energia Livre de Gibbs descreve o estado de energia da dgua, que no
sistema solo-planta-atmosfera recebe o nome particular de Potencial Total da Agua. A energia
livre de Gibbs € expressa em unidade de energia. Como a energia de um sistema € uma
grandeza extensiva, ou seja, proporcional a escala do sistema, ¢ comum expressa-la por uma
unidade de outra grandeza proporcional a extensdo do sistema. Das formas mais utilizadas, a
principal € a energia por unidade de volume, que possui dimensdes de pressdo. Esta grandeza,
apesar de ser “energia”, possui a propriedade de ser intensiva, ou seja, € invariante a escala do
sistema e por isso a energia da 4gua é chamada de potencial, sendo medido em unidade de
pressdo (REICHARDT e TIMM, 2004).

A diferenca de potencial da 4gua em pontos do solo gera o seu movimento pelo espago poroso
do solo. Assim como qualquer corpo na natureza, a 4gua tende a se mover de pontos em que
sua energia potencial total € maior para pontos em que € menor, conforme afirmam Reichardt e
Timm (2004):

“A tendéncia espontanea e universal de toda matéria na natureza é assumir um
estado de energia minima, procurando equilibrio com o meio ambiente. A

agua obedece a essa tendéncia universal e move-se constantemente no sentido
de diminuicdo de seu potencial total”.

O potencial total da dgua (), indicado na equacdo 2.1, € determinado pela soma de cinco
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componentes: os potenciais térmico (W), gravitacional (W), de pressao (V¥ p), osmotico (W)

e matricial (W,,).

V=Vpr+V, +Vp+ WV, + V¥, 2.1

O potencial térmico estd associado a diferencas de temperatura e pode ser desprezado, visto
que os processos que ocorrem no solo sdo aproximadamente isotérmicos (REICHARDT e
TIMM, 2004).

O potencial gravitacional ocorre devido ao campo gravitacional terrestre e estd sempre
presente. E determinado pela elevacdo relativa a um nivel arbitrario de referéncia. Pode ser

medido em energia por unidades de volume, massa ou peso.

O potencial de pressdo atua sempre que houver pressao ocasionada por uma carga de volume
de 4gua, logo uma pressao positiva. Esse potencial s6 € importante para solos saturados que,
por conseguinte, possuem uma coluna de dgua exercendo pressdo sobre o ponto a ser

considerado.

O potencial osmotico esta associado a presenga de sais e outros solutos na dgua. Considerando
somente a relacao dgua-solo, ndo hd presenca de membranas semipermedveis, que sao
membranas que permitem a passagem de moléculas de solventes em uma solu¢do, mas nao de
soluto. Também, a pouca variagdo da concentracdo da solucao do solo contribui para que o

potencial osmético ndo seja considerado em tal relacdo.

O potencial matricial refere-se as interagdes entre a matriz do solo e a solucgao retida nele,
sendo representado pelas forcas de adsorgdo e capilaridade, que s@o as principais forgas

responsaveis pela retencdo de dgua no solo (LIBARDI, 2005).

Pelo fendmeno da adsorcao a retencdo de dgua ocorre nas superficies das particulas sélidas do
solo por adesdo das moléculas da 4gua ou soluto, formando um filme continuo de dgua.
Portanto, quanto maior for a drea superficial especifica, ou seja, a drea por unidade de massa,
da particula s6lida, maior sera a for¢a de adsor¢cao. Dentre as particulas s6lidas do solo
considerada para avaliacdo da textura (areia, silte e argila) a que possui maior area especifica é
a argila (REICHARDT e TIMM, 2004).

Segundo Libardi (2005) sdo trés os mecanismos propostos para explicar o processo de

adsorcao:

e A superficie dos minerais de argila € coberta com atomos de hidrogénio e grupos de
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oxidrilas negativamente carregados, formando um campo elétrico ao redor das particu-
las desses minerais cuja intensidade decresce com a distancia da superficie da particula.
Como as moléculas de dgua sao de natureza dipolar, ou seja, carregadas negativa e posi-
tivamente, elas se orientam neste campo elétrico e experimentam uma forca na superficie

da particula;

e Os pares de elétrons ndao compartilhados presentes nas moléculas de dgua podem ser
eletricamente atraidos a cétions trocdveis que podem estar adsorvidos sobre a superficie

de argila;

e As moléculas de d4gua podem, ainda, ser atraidas as superficies sélidas pelas forcas de
London-van der Waals, que s@o forgas de alcance curto decrescendo rapidamente com a

distancia da superficie.

Ja pelo fendmeno da capilaridade a retengcdo ocorre nos microporos dos agregados, sendo
sempre associado a uma interface curva ar-dgua cuja curvatura depende do tamanho do poro.
Como a variedade de poros no solo, em forma e didmetro, é grande, aplicando uma energia
determinada os poros a se esvaziarem primeiro sao os maiores. Quanto menor o poro, mais a
dgua se encontra retida. A figura 2.4 ilustra os processos envolvidos na retencdo de dgua no

solo.

O potencial total da 4gua no solo representa a diferenca de energia entre a 4gua no solo e a
dgua padrdo, ou seja, “dgua livre, de mesma concentragcdo e temperatura que a dgua no solo e
cuja superficie plana é considerada como referéncia gravitacional e sujeita a pressdo
atmosférica” (LIBARDI, 2014). Quando somente o potencial matricial possui efeito sobre o
potencial total da dgua no solo, ele pode ser determinado através da diferenca entre a energia
potencial da dgua no solo () e a energia potencial da dgua padrao (Ey), divididos por um

volume de agua (V,). Esta relacdo pode ser verificada na equagdo 2.2.

E—FE,
v, =—: 2.2
m 7 (2.2)
Como a 4dgua no solo estd sujeita a acdes das for¢as métricas (capilaridade e adsorcdo), ela
possui liberdade de movimento reduzida se comparada com a 4dgua livre. Isto leva a uma
conclusdo de que a energia potencial da d4gua no solo € menor do que a energia da dgua padrdo.

Logo, o potencial matricial é uma quantidade negativa. E comum a utiliza¢io do valor

absoluto do potencial matricial. Neste caso, o potencial matricial passa a ser denominado de



15

interface curva
ar-dgua

particula
do solo

—— agregado

filme continuo
de agua

ar no solo

S (macroporo)

lllict'npnl'n‘\

Figura 2.4: Retencdo de dgua por agregados no solo pelas forcas de adsor¢ao, formando um

filme continuo de 4gua, e capilaridade, através da interface curva ar-dgua (adaptado de Libardi
(2005)).

tensdo da dgua no solo. Entretanto, o termo “potencial matricial” continua sendo utilizado em

muitos trabalhos, mesmo sendo considerado o seu valor absoluto.

A componente matricial do potencial total da 4gua no solo ndo pode ser facilmente calculada,
tendo sua medida feita através de processos experimentais por meio de tensidmetros
(equipamento que mede a tensd@o com que a dgua estd retida no solo) ou instrumentos de

pressao.

Na pratica, para remover a solucdo retida no solo e deix4-la livre da influéncia da matriz do
solo é necessdrio despender energia e, neste caso, essa energia devera ser tanto maior quanto
menor for o contetido de dgua no solo. Portanto, quanto maior for a umidade (¢) de um solo,
menor serd a magnitude do potencial matricial (\V,,) envolvido. Logo, o potencial matricial

pode ser dado em fun¢do da umidade do solo.

O grafico desta relagdo entre a umidade e o potencial matricial € denominado de curva de
retengdo de dgua no solo, ou curva caracteristica de 4gua no solo. Para Klute e Dirksen (1986,
apud CANCINO CALLE, 2000) a curva de reten¢do € uma representacdo da capacidade do

solo de armazenar 4gua.

Existem duas formas de se obter a curva de retencdo experimentalmente:
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Por secamento : a amostra de solo previamente saturada € exposta a potenciais matriciais

crescentes, diminuindo a umidade do solo.

Por molhamento : a amostra de solo seca tem o seu potencial matricial reduzido gradativa-

mente, aumentando a umidade do solo.

Um problema encontrado na obtencdo empirica da curva de retenc¢do estd no fato de que estes
dois métodos geram curvas nao idénticas. Para um mesmo valor de potencial matricial, a
umidade verificada para o método por secamento € maior do que pelo método por molhamento.
A este fendmeno damos o nome de histerese. Hillel (1998) descreve que as causas desse
fendmeno podem ser devidas a: ndo uniformidade dos poros; diferentes angulos de contato,
que sdo maiores em umedecimento, gerando raios de curvatura diferentes para cada situacdo; a
retencao do ar em poros, gerando bolhas de ar, durante o processo de umedecimento; e

alteracdes na estrutura do solo causadas pelo historico de umedecimento e secamento.

Em uma tentativa de sanar estes problemas e diminuir o tempo levado para obter a curva de
retencao de dgua no solo, varios modelos empiricos (VAN GENUCHTEN, 1980; ROSSI e
NIMMO, 1994; ASSOULINE et al., 1998), obtidos por suposi¢des feitas a partir da

observacao de dados experimentais, t€ém sido propostos.

Dentre os principais fatores que interferem na forma da curva de reten¢do podemos citar a
distribui¢do granulométrica (fragdes de areia, silte e argila), a distribui¢ao dos poros do solo, a
estrutura do solo e a mineralogia (caracteristicas fisicas e quimicas) das particulas (CANCINO

CALLE, 2000). Segundo Hillel (1998), a forma da curva de retencdo depende fortemente da
textura do solo. Solos mais argilosos tendem a reter mais d4gua que solos arenosos para cada
valor de potencial matricial aplicado. Solos arenosos possuem a maioria dos poros
relativamente grandes e uma vez que esses poros sejam esvaziados sob um determinado
potencial matricial, somente uma pequena quantidade de 4gua permanece retida no solo. Ja
solos argilosos possuem seu espago poroso distribuido mais uniformemente, logo uma
quantidade maior de dgua € retida por adsorcao. Desse modo, o aumento do potencial matricial
causa uma reducdo mais gradativa na umidade do solo. Essa relagdo da textura com a curva de

retengdo de dgua no solo pode ser observada na figura 2.5.

O valor de umidade a um potencial nulo indica a umidade que preenche por completo o espago
poroso do solo, sendo chamada de umidade de saturacdo. Aumentado-se o valor do potencial
matricial, observa-se um comportamento assint6tico a determinado valor de umidade, que
indica a umidade que continua retida no solo mesmo com o aumento do potencial aplicado.

Esta umidade é chamada de umidade residual. Como pode ser verificado de forma
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Figura 2.5: Efeito da textura na curva de reten¢@o de dgua no solo (adaptado de Hillel (1998)).

generalizada na figura 2.5 e pelo que foi dito anteriormente, solos argilosos possuem umidade

de saturagdo maior do que solos arenosos, € 0 mesmo também vale para a umidade residual.

2.3 Influéncia da matéria organica na retencao de agua no
solo

A quantidade de matéria organica no solo depende, dentre outros fatores, da entrada de
material organico, da sua taxa de mineralizacao (transformacdo dos compostos organicos em
inorganicos), da textura do solo e do clima (COSTA, SILVA e RIBEIRO, 2013). Principal
fonte de nutrientes para as plantas, seu contetido, na maioria dos solos, pode variar de 1 a 10%,
estando em maior quantidade nos horizontes superficiais do solo (REICHARDT e TIMM,
2004).

Além de contribuir para o enriquecimento de nutrientes no solo, a matéria organica também
possui influéncia sobre o comportamento fisico do solo, atuando direta ou indiretamente sobre

alguns de seus fatores fisicos.

As caracteristicas da matéria organica que influenciam diretamente os fendmenos fisicos e

quimicos do solo sdo a sua alta 4rea especifica, variando de 800 a 900 m?.g~!

e a sua grande
quantidade de carga elétrica negativa (MEURER et al., 2000 apud BRAIDA, 2004; BRAIDA
et al., 2011). Estas cargas elétricas sdo provenientes dos componentes das substancias
originadas da oxidagdo e polimerizacdo da matéria orginica, denominadas dcidos himicos e

fulvicos, conferindo a matéria organica cerca de 70 a 80% da responsabilidade na CTC em
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solos tropicais (FAVORETTO, 2007).

De forma indireta, a matéria organica atua como um elemento cimentante, contribuindo para a
formacdo de agregados e consisténcia do solo, e, consequentemente, na distribuicdo do
tamanho dos poros (BRAIDA et al., 2011). Para Bayer e Mielniczuk (2008), a agregacdo do
solo € a principal caracteristica fisica do solo afetada pela matéria organica, afetando,
indiretamente, as demais caracteristicas fisicas do solo como a densidade, a porosidade e a

capacidade de retencdo e infiltragdo de dgua.

Os fendmenos envolvidos na reten¢do de d4gua no solo, capilaridade e adsor¢do, estao
diretamente relacionados com o tamanho dos poros e a ocorréncia de superficies carregadas
eletrostaticamente. Portanto, pelos efeitos que a matéria organica possui nas caracteristicas

fisicas e quimicas do solo, citados anteriormente, € esperado que ela possua influéncia sobre a

retencao de dgua no solo.

Apesar de a teoria indicar uma influéncia consideravel da matéria organica sobre a retencdo de
agua no solo, Braida et al. (2011) e Rawls et al. (2003) citam trabalhos que possuem
resultados contraditdrios. O primeiro autor cita, por exemplo, o trabalho de Sommerfeldt e
Chang (1986), em que a a adi¢do de matéria organica (esterco de gado) permitiu retengdo de
dgua considerdvel apenas sob uma tensdo de 1500 kPa, ndo ocorrendo o mesmo para uma
tensdo de 20 kPa. O segundo autor faz um levantamento de 12 trabalhos, analisando a
influéncia de matéria organica na retencdo de dgua sob dois valores de tensao, 33 kPa e 1500
kPa. Destes, apenas 5 obtiveram resposta positiva para o primeiro valor de tensdo, e 8 para o
segundo valor de tensao. Estes mesmos autores afirmam que estes resultados sdo provenientes
de procedimentos inadequados adotados para verificar a relacdo entre as varidveis, além da

dificuldade em se isolar os efeitos dos diferentes fatores envolvidos diretamente no fendmeno.

Para Rawls er al. (2003) e Rawls, Nemmes e Pachepsky (2004) é importante incluir a matéria
organica como varidvel de entrada em equagdes para estimar a umidade do solo a fim de
reduzir os erros de estimativa desses modelos. Em seus trabalhos foram verificados que a

contribuicdo de matéria organica na reten¢do de umidade variou entre 14% a 75% e que solos

arenosos possuem mais sensibilidade a reten¢do de umidade sob influencia da matéria organica

do que solos argilosos.

2.4 Modelos de dinimica de agua no solo

Como j4 foi visto, o movimento da dgua em estado liquido no solo se da sempre que houver

uma diferenca de potencial hidrdulico, ou potencial total, em diferentes pontos do sistema.
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Esse movimento se da no sentido do maior potencial para o menor.

Considerando as idéias de Darcy de 1856, que modela o0 movimento de 4gua em meio poroso
saturado, Buckingham, em 1907, propde um modelo (equacdo 2.3) que descreve o movimento
de 4gua em meio poroso ndo saturado, levando em conta as relacdes entre o potencial matricial
da 4gua no meio poroso e a condutividade hidrdulica, que expressa a facilidade com que a d4gua

se movimenta por este meio (LIBARDI, 2005). Buckingham foi o primeiro a definir o

potencial matricial e a condutividade hidrdulica como fun¢des da umidade do solo.

¢=—-K(0) VU (2.3)

ou ainda, considerando somente o fluxo vertical de dgua,

(2.4)

sendo ¢ a densidade de fluxo de 4gua no solo, ou seja, o volume de 4gua que passa por unidade
de tempo e pela unidade de area de secdo transversal, 6 a umidade volumétrica do solo, K () a
condutividade hidrdulica do solo ndo saturado, V,,, () o potencial matricial da d4gua no solo e z

a coordenada vertical de posicao.

Na equagdo 2.3 a densidade de fluxo de dgua € proporcional a forca que atua sobre a dgua, isto
é, o gradiente do potencial. O sinal negativo na equacdo indica que o fluxo da dgua possui
sentido inverso ao sentido do gradiente de potencial. O sentido do gradiente € tomado, por

definicao, no sentido de crescimento do campo potencial, ou seja, do menor valor de potencial

para o maior. Como o movimento da dgua se d4 no sentido de maior potencial para o menor, a

inclusdo do sinal negativo € necesséria.

Em 1931, Lorenzo A. Richards propde uma equagdo que descreve o fluxo de dgua em meio
poroso ndo saturado, combinando a equagdo da continuidade com a equagdo de
Darcy-Buckingham (2.4), que considera o potencial total da d4gua no solo ao invés de somente
o potencial matricial (LIBARDI, 2005). Utilizando a equagdo da continuidade, Richards insere
em sua equacao o principio da conservacdo da massa de d4gua contida em um volume
elementar do solo. Isto permite quantificar a umidade do solo em uma determinada posi¢do e
em um determinado tempo. A equacdo de Richards € a mais utilizada para descrever o
fendmeno de fluxo de 4gua em um solo ndo saturado. A equagdo 2.5 representa a equacao de

Richards para o fluxo vertical de 4gua no solo.
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% = V. [K(O)VY], (2.5)

ou ainda, considerando somente o fluxo vertical,

(2.6)

0 0 ov
= 5 {K(H)a} .

A ndo-linearidade da equacao de Richards torna invidvel a obtencdo de solucdes analiticas,
exceto aquelas tomadas a partir de linearizagdes com base em consideracdes sobre a relacio da
condutividade hidraulica com a umidade do solo. Alguns métodos numéricos t€m sido
propostos para resolver esta equagdo, entretanto, segundo Célia, Bouloutas e Zarba (1990,
apud MANICH e GUETTER, 2011) estes métodos podem apresentar problemas de
convergéncia.

Van Genuchten (1980) apresenta em seu trabalho uma equacao para estimar a condutividade

hidrédulica relativa, K, = %g), em solos ndo saturados. Esta expressdo (equacdo 2.8) se baseia
nas informagdes da curva de reten¢do de umidade do solo e no modelo proposto por Mualem
(1976), o qual se baseia nas informacdes da curva de retencdo e condutividade hidraulica do
solo saturado para estimar o valor da condutividade hidrdulica no solo insaturado. Em
adaptacgao deste ultimo autor, van Genuchten ainda propde uma equacao de relacdo entre a

umidade de um solo nao saturado com o potencial matricial aplicado, indicado pela equagao

2.7.
6, —0
0=0,+ s, 2.7
1 o, &7

sendo 6 a umidade volumétrica do solo, 8, a umidade volumétrica residual do solo, 8, a
umidade volumétrica de saturac¢do do solo, ¥,, o potencial matricial da 4gua soloe o, men

constantes empiricas (adimensionais).

Combinando a equagdo 2.7 com o modelo de Mualem (1976) e considerando a simplificagdao

dequem=1— % também proposta em Mualem (1976), a equacdo de van Genuchten para

condutividade hidraulica do solo se torna
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1 m= 2

K@) =K' [1—[1-wm , (2.8)

na qual
" 6—0,
0, —0,

¢ a saturacdo efetiva, K é a condutividade hidraulica do solo saturado e £ um parametro
empirico estimado por Mualem (1976) e considerado igual a aproximadamente 0, 5 para a

maioria dos solos (LIBARDI, 2005).
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3 Logica Fuzzy

3.1 Conjuntos Fuzzy

Introduzida em 1965 pela publicacio do artigo Fuzzy Sets do matemdtco Lotfi A. Zadeh, a
l6gica fuzzy tem sido estudada e aperfeicoada em uma tentativa de modelar, matematicamente,
varidveis julgadas subjetivas (BARROS, 1997). A 16gica classica, do verdadeiro ou falso, do é

ou nao é, muitas vezes ndo consegue representar a multivaléncia do mundo real.

Para a l6gica cldssica, um elemento pertence a um conjunto ou ndo. Zadeh (1965) cita que,
comumente, as classes de objetos encontradas no mundo fisico real ndo possuem um critério
precisamente definido de pertinéncia. Como exemplo, considere a classe de pessoas altas. E

subjetivo concluir se uma pessoa de 1,80 m pertence a este conjunto ou nao quando se sabe que
existem pessoas com 2,00 m ou mais. Também € subjetivo concluir quais valores de umidade

de um solo sdo considerados altos ou quais valores de potencial matricial (tensdo) sao baixos.

Para contornar as limitagdes da matematica classica e incluir estas questoes subjetivas,
inicialmente Zadeh baseou-se no fato de que qualquer conjunto cldssico pode ser caracterizado
por uma fun¢do, denominada funcao caracteristica (BARROS e BASSANEZI, 2010), que

resulta em 1 se o elemento pertence ao conjunto ou zero caso contrario (equagdo 3.1).

(2) 1 sexecA 3.1
xa(x) = ) i
. 0 sex¢g A

Claramente, a imagem desta func@o estd contida no conjunto {0, 1}, ou seja, representa
somente a relacdo bindria: pertence/ndo pertence. Para um conjunto fuzzy esta fungao
caracteristica representa mais do que a relacdo de pertencer ou ndo pertencer, ela indica o grau
de pertinéncia do elemento ao conjunto considerado. Este grau esta contido no intervalo [0, 1]

e, quanto mais préximo de 1 o grau estiver, mais forte serd a relacdo de pertinéncia.

Por exemplo, considere o conjunto dos nimeros reais proximos de 5. E de se esperar que o

grau de pertinéncia do elemento 6 seja maior do que o grau de pertinéncia do elemento 7.
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Um subconjunto fuzzy serd definido como um par ordenado composto do seu elemento seguido

de seu grau de pertinéncia, como formalizado abaixo:

Definicao 3.1. Um subconjunto fuzzy A de um conjunto cldssico U é caracterizado por uma

Jfuncdo

/LAIU—>{O,1]

pré-fixada, chamada fungdo de pertinéncia do subconjunto fuzzy A. Esse subconjunto pode ser

representado da forma

A= {(2, pa(z)),x € U, pa() € [0, 1]} .

O suporte de um conjunto fuzzy A representa o conjunto dos elementos que possuem grau de

pertinéncia ndo nulo a A e serd definido como o subconjunto classico de U da forma

suppA ={x € U : pa(z) > 0}.

Como exemplo de um conjunto fuzzy tome a textura de um solo considerado arenoso. Pelo
visto no Capitulo 2, um solo é considerado arenoso se o percentual de argila estiver entre 0% e
15%. Desse modo, uma fung¢do de pertinéncia possivel para este conjunto fuzzy, denominado

por A, pode ser dada por

0,15 —=x

0 caso contrario

se0<x<0,15

Graficamente, este conjunto fuzzy estéa representado pela figura 3.1, segundo sua fun¢do de
pertinéncia considerada. Observe que o valor de textura que pertence 100% a classe Arenosa é
aquele que possui 0% de argila. A medida que o percentual de argila aumenta, o grau de
pertinéncia da textura a essa classe decai, sendo nulo a partir do valor de 15% de argila. Para
este caso € considerado um decrescimento linear na fun¢do de pertinéncia, entretanto, podem
ser considerados outros tipos de funcdes que melhor descrevam o comportamento esperado
para a varidvel que se estd analisando. Este fato sustenta a vantagem de se modelar varidveis
como textura como um conjunto fuzzy. A teoria diz que a textura € arenosa se o teor de argila

estiver entre 0 a 15%, passando para textura média a partir de 15% de argila. A modelagem
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por conjunto fuzzy pode considerar esta passagem de forma gradual, mais coerente com a
realidade. Assim, um valor de 14,9% de argila pode ser melhor representado como um valor
que estd em uma regido de mudancga de classe textural, j4 que seu grau de pertinéncia a classe

arenosa € baixo.

ON

0 0.15 argila (x100%)

Figura 3.1: Gréfico da fun¢do de pertinéncia do conjunto fuzzy Textura Arenosa, considerado
no exemplo da se¢do.

3.2 Operacoes com conjuntos fuzzy

Algumas operagdes bésicas com conjuntos fuzzy, como unido, interse¢do e complementacao,
devem ser bem entendidas, posto que serdo recorrentes no desenvolvimento da teoria fuzzy.
Existem diferentes formas de se definir estas operacdes. As defini¢des apresentadas a seguir
sdo as formas cldssicas de se definir estas operacdes, propostas por Zadeh (1965). O leitor que
desejar aprofundar os conhecimentos de l6gica fuzzy pode consultar o texto de Barros e

Bassanezi (2010).

Sejam A e B dois subconjuntos fuzzy de U, com fung¢des de pertinéncia representadas por ji4 €

143, Tespectivamente.

Definicao 3.2. A unido entre A e B é o subconjunto fuzzy de U cuja funcdo de pertinéncia é
dada por
M(AuB)(iE) = max {pa(v), pp(z)}, 2 € U.

Definicao 3.3. A intersecdo entre A e B é o subconjunto fuzzy de U cuja fungdo de pertinéncia
¢ dada por
pangy(z) = min {pa(x), pp(x)},z € U.
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(a) Grifico de p»

(¢) Griéfico de paup) (d) Gréfico de pianp)

(e) Gréfico de pa-

Figura 3.2: Tlustracdo de operacdes bdsicas com conjuntos fuzzy

Definicao 3.4. O complementar de A é o subconjunto fuzzy A’ de U, cuja funcdo de pertinéncia

€ dada por
pa(x) =1—pa(z),z €U

A figura 3.2 ilustra as definicdes classicas para as operacdes de unido, intersecao e

complementar de conjuntos fuzzy.

Definicao 3.5. Seja F' um subconjunto fuzzy de U e a € [0, 1]. O a-corte de F é o subconjunto
cldssico de U definido por
[F]* ={z € U:pp(z) = o}

para() < o < 1.
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Figura 3.3: Ilustracdo de alfa-corte. Neste caso o alfa-corte € composto pelo intervalo [2,4].

Definicao 3.6. Um subconjunto fuzzy A é dito normal se todos os seus a-cortes forem ndo

vazios.

3.3 Numeros Fuzzy

Em diversas situagdes do cotidiano, principalmente em processos de modelagem, a tomada de

medidas, ou parametros, envolvem informag¢des imprecisas sobre valores numéricos. Tal como

na medida da umidade de um solo, em que erros de precisdao provenientes dos instrumentos de

medida, falha humana, dentre diversos outros fatores, podem afetar o resultado do parametro.
O que acontece na maioria das vezes € a decisdo por tomar um valor “preciso” para o

parametro, ao invés de um valor em torno dele.

Por exemplo, se ap6s um experimento foi verificado que a umidade volumétrica de um solo é
0,235 em? / ecm?, seria razoavel considerar um valor em torno deste, considerando falhas nas
medicOes. Para estas consideragdes, a 16gica fuzzy lida de maneira eficaz através dos nimeros

fuzzy, que sdo um caso particular de um conjunto fuzzy.

Definicao 3.7. Um subconjunto fuzzy A é chamado de nimero fuzzy quando o conjunto uni-

verso no qual 14 estd definida, é o conjunto dos niimeros reais R e satisfaz as condigcoes:

e todos os a-cortes de A sdo ndo vazios, com « € |0, 1];
e todos os a-cortes de A sdo intervalos fechados de R;
o suppA ={z € R: pa(x) > 0} € limitado.

De outra forma, podemos definir um ndmero fuzzy como um subconjunto fuzzy normal e

convexo. A convexidade, neste caso, implica que o grafico da fun¢do de pertinéncia do
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subconjunto fuzzy tenha uma parte crescente e outra decrescente e, algumas vezes, alguma
parte plana (MCBRATNEY & ODEH, 1997).
Os numeros fuzzy mais comuns s@o os triangulares, trapezoidais e em forma de sino.

Um niimero fuzzy triangular é definido por uma tripla (a; u; b) em que a e b sdo os limites
inferior e superior, respectivamente, do intervalo [a, b] e u é o valor do intervalo [a, b] que

possui grau 1 pela funcdo de pertinéncia, cuja forma é

r—a
sea<z<u
pa(z) =q = , seu<w<h- (3.2)
u_

0 caso contrario

A figura 3.4 ilustra um nimero fuzzy triangular.

()

=i fl|

R

Figura 3.4: Gréfico de niimero fuzzy triangular

Um niimero fuzzy trapezoidal é definido por uma quadrupla (a; b; ¢; d) em que a e d sdo,
respectivamente, os limites inferior e superior do intervalo [a, d] com grau 0 na fungéo de
pertinéncia, e b e ¢ sdo, respectivamente, os limites inferior e superior do intervalo [b, ¢] que

possui grau 1 na fungdo pertinéncia. A fun¢do de pertinéncia de um ndmero fuzzy trapezoidal

tem a forma

(T —a
sea<x<b

b—a
1 seb<zr<e¢

pa(x) =19 4- 4 : (3.3)

sec<x<d

d—rc
0 caso contrario

A figura 3.5 ilustra um nimero fuzzy trapezoidal.
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()

R

Figura 3.5: Gréfico de nimero fuzzy trapezoidal.

Um ndmero fuzzy tem forma de sino se sua fungao de pertinéncia for suave e simétrica em
relacdo a um nimero real . Sua funcdo de pertinéncia (equacao 3.4) possui diferentes formas
sendo uma delas citada por Barros e Bassanezi (2010) com as entradas u, a e 9, sendo u 0
valor central do intervalo (média) que possui grau de pertinéncia 1, a o valor que define a
amplitude de abertura da forma de sino da funcio (desvio-padrdo) e o valor que define as

limita¢des do intervalo, conforme indicado na figura 3.6.

T — u\?>

pa(x) = e( a> seu—0<z<u+9 . (3.4)

0 caso contrario

()

u—0 u u+9 R

Figura 3.6: Grafico de nimero fuzzy em forma de sino.

A escolha do nimero fuzzy a ser utilizado na modelagem depende das condi¢des que se queira
propor sobre a varidvel. Apesar de existirem diferentes nimeros fuzzy para representacao de
uma varidvel, os mais utilizados sao os nimeros fuzzy triangular e trapezoidal, pela
simplicidade de suas funcdes de pertinéncia e modelagem computacional. Pedrycz (1994) cita
que algumas caracteristicas destes nimeros fuzzy que justificam seu uso na modelagem sdo a
sua informagdo satisfatoria acerca do termo linguistico e a sua distribui¢do linear sobre o

dominio da variavel.
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3.4 Relacoes Fuzzy e operadores logicos

Assim como na légica cldssica, na logica fuzzy pode-se modelar a interacdo entre elementos de
conjuntos diversos. Estas interagdes sio as chamadas relacdes. Enquanto uma relac@o na
l6gica classica indica se ha ou ndo alguma associag@o entre os objetos considerados, na légica

fuzzy uma relagdo indica também qual o grau desta associagdo.

Definicao 3.8. Uma relagdo cldssica R sobre Uy x Uy X ... x U,, é qualquer subconjunto cldssico
de U1 X U2 X ... X Un

Em particular, a relacdo R pode ser representada por sua funcao caracteristica

xr Uy x Uy x ... x U, = {0,1},

definida por

1 se(x1,x9,....,0,) ER

X'R(xlvx% 7xn) = .
0 se(xy,z2,....,x,) € R

Definicao 3.9. Uma relagdo fuzzy sobre Uy x Uy X ... X U, é qualquer subconjunto fuzzy de
U x Uy x ... xU,.

Portanto, uma relagao fuzzy ‘R € definida por uma fungdo de pertinéncia

[LRIU1XU2X...XUn—>[O,H.

Esta operagao se assemelha a intersecao de conjuntos fuzzy, com a diferenca de que na
intersecdo os conjuntos sdo de um mesmo universo enquanto que no produto cartesiano eles
podem ser de universos diferentes. Como exemplo, pode-se fazer o produto cartesiano (relagao
fuzzy) entre conjuntos fuzzy para determinadas classes de textura do solo e de potencial

matricial, que sdo de universos distintos.

Definicao 3.10. O produto cartesiano fuzzy dos subconjuntos Ay, As, ..., A, de Uy, Us, ..., U,

respectivamente, é a relacdo fuzzy A1 x As X ... X A, cuja fungdo de pertinéncia é dada por

LAy Ag,oo A (T1, T2y ooy Tp) = TN { LA, (2) s s (22)5 -5 KA () | -
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As sentencgas utilizadas pela l6gica normalmente sdo acompanhadas de conectivos 16gicos

como e, ou, ndo e implicacdo. Como exemplo pode ser tomada a seguinte sentenca:

Textura do solo argilosa e tensdo de succdo baixa = Umidade do solo alta,

que usa os conectivos e, que relacionam as proposicoes, e implicagdo, indicado pela seta =,

para indicar a conclusdo das proposigoes.

Para a 16gica cléssica, uma sentenca verdadeira possui valor I6gico igual a 1, enquanto uma
sentenga falsa possui valor 16gico igual a 0. Tomando duas proposi¢des p e g e observando os
valores das tabelas verdades para os conectivos citados, podemos associar operadores

matematicos que correlacionam esses conectivos.

Conectivo e: Representado pelo simbolo A, sua tabela verdade indica a utilizagdo do operador

minimo.

Tabela 3.1: Tabela verdade para conectivo A.

P 9/pAgq
1 1 1
1 0 0
0 1 0
0 0 0

Logo, o operador A pode ser definido por

A:{0,1} x {0,1} = {0,1}
pAq=min{p,q}.

Conectivo ou: Representado pelo simbolo V, sua tabela verdade indica a utilizacdo do opera-

dor mdximo.

Tabela 3.2: Tabela verdade para conectivo V.

P 9|PAQ
1

1 1

1 0 1
0 1 1
0 0 0

Logo, o operador V pode ser definido por
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v:{0,1} x {0,1} — {0,1}
pVq=max{p,q}.

Conectivo negacao: Representado pelo simbolo —, esse operador € undrio:

—:{0,1} = {0,1}
p— —p,

sendo =1 =0e -0 = 1.

Tabela 3.3: Tabela verdade para conectivo —.

pP|™p
1] 0
0] 1

Este operador pode ser representado por: —p =1 — p.

Conectivo implicacdo: Representado pelo simbolo =, ¢ um operador bindrio, assim como os

conectivos A e V.

=:{0,1} x {0,1} — {0,1}

(p,q) = (p=4q).

Tabela 3.4: Tabela verdade para conectivo =-.

P 9/P=9
1 1 1
1 0 0
0 1 1
0 0 1

E possivel representar o conectivo = através de trés férmulas diferentes, utilizando os

conectivos anteriores, sendo a mais simples dada por

(p=q) =(-p) Vg
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Avaliando agora a 16gica fuzzy, os valores l6gicos assumidos por uma varidvel estdo contidos
no intervalo [0, 1]. Por isto, os conectivos vistos anteriormente devem ser estendidos, de forma
a contemplar esta caracteristica da l6gica fuzzy. Estas extensdes sdo obtidas pelas normas e

conormas, definidas a seguir.
Definicao 3.11. O operador A : [0,1] x [0,1] — [0,1], A (z,y) = zAy, é uma t-norma se
satisfaz as condigoes:
1. 1Az =xe0Az = 0;
2. xAy = yAx;
3. zA (yAz) = (xAy) Az,

4. sex <uey < w, entdo xAy < ulAw.

A operagdo t-norma faz a extensdo ao operador A para o conectivo “‘e”.
Definicdo 3.12. O operador V : [0,1] x [0,1] — [0,1], V (z,y) = xVy, é uma t-conorma se
satisfaz as condigoes:
1. OVe=zelAzx=1;
2. zVy =yVua;
3. 2V (yVz) = (xVy) Vz;

4. sex <uey < w, entdo xtVy < uVuw.

A operagdo t-conorma faz a extensao ao operador V para o conectivo “ou”.

Definicdo 3.13. O operadorn : [0,1] — [0, 1], é uma negagado se satisfaz as condigdes:

1. n(0)=1len(1)=0;

2. n(n(x) =

3. n é descrescente.

Como exemplo, pode ser considerado 7 (z) = 1 — z.

Definicao 3.14. Um operador =: [0, 1] x [0, 1] — [0, 1] é uma implicacdo fuzzy se satisfaz as

condicoes:
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1. reproduz a tabela da implicacdo cldssica;

2. é decrescente na primeira varidvel, isto é, se a > b entdo (a = =) < (b = ), para cada

z € [0,1];

3. é crescente na segunda varidvel, isto é, se a > b entdo tem-se (x = a) > (v = b), para

cada v € [0, 1].

Como exemplo de implicagdo fuzzy pode ser citada a implicacdo de Godel (BARROS e
BASSANEZI, 2010), definida pela equagao abaixo:

1 sex <y
(z=y)=9g(z,y) = :
Yy sex >y

3.5 Sistema de Inferéncia Fuzzy

Tomar decisdes no mundo real normalmente requer uma sequéncia de agdes a partir do
conhecimento de informag¢des que sdo, muitas vezes, imprecisas. As informacoes sdo
processadas por um individuo que as interpreta segundo seus parametros e, em seguida, toma

as atitudes necessarias.

Todo o processo de receber as informagdes até a decisdo das atitudes segue uma sequéncia de
ordens linguisticas, que sdo traduzidas por um conjunto de regras que fazem com que o

sistema de inferéncia tome a decisao correta do que fazer ou responder.

Por exemplo, se tomarmos um conjunto de varidveis que influem no resultado da umidade de
um solo, como textura e potencial matricial (em valor absoluto), e essas varidveis linguisticas
estdo sujeitas as condi¢cdes de: umidade do solo ser baixa, média ou alta; textura do solo ser
arenosa ou argilosa; e potencial matricial ser baixo ou alto. Sabemos que quanto mais argiloso
for o solo, mais umidade este solo reterd, do mesmo modo que quanto menor for o potencial
matricial (em magnitude), maior serd a umidade neste solo. Assim, entrando com as
informacdes de textura arenosa e potencial matricial alto, o resultado 6bvio pela decisiao do
controlador, que neste caso poderia ser um pesquisador da drea ou conhecedor das regras

envolvidas no fendmeno, seria umidade do solo baixa.

Segundo Barros e Bassanezi (2010), (...) uma tentativa de reproduzir a estratégia de um
controlador humano, na execucdo de suas tarefas, é dada pelos controladores fuzzy”. Um

controlador fuzzy ou um sistema de inferéncia fuzzy sdo casos tipicos de um Sistema Baseado
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em Regras Fuzzy (SBRF), ou seja, um sistema que interpreta informacdes fuzzy através da

l6gica fuzzy para produzir uma resposta.

Assim como no exemplo dado acima, os sistemas de inferéncia fuzzy realizam suas tarefas por
meio de termos linguisticos, na forma de conjuntos fuzzy, que sao utilizados para transcrever a
base de conhecimentos por meio de um conjunto de regras, denominado base de regras fuzzy
(BARROS e BASSANEZI, 2010).

Um sistema de inferéncia fuzzy é constituido dos seguintes modulos, representados no

esquema da figura 3.7,

Base de
Regras

Fuzzificagdo | p 1 —p | Defuzzificacao

Inferéncia

Fuzzy

Figura 3.7: Esquema geral de sistema de inferéncia fuzzy

3.5.1 Modulo de fuzzificacdo

Nesta etapa, as varidveis de entrada e saida do sistema sdo modeladas por conjuntos (ou
ndmeros) fuzzy. A decisdo das func¢des de pertinéncia a serem utilizadas para cada varidvel
linguistica € realizada neste momento, fazendo-se necessario a ajuda de um especialista da

area para a correta modelagem das entradas do sistema. Cada conjunto fuzzy de cada variavel

de entrada € representado por um termo lingiiistico, como baixo, médio, alto, e outros mais.

3.5.2 Moébdulo da base de regras

Nesta etapa, o sistema de inferéncia fuzzy interpreta as entradas do sistema por meio de um

conjunto de regras da forma
Se estado Entao resposta,

também chamada de proposi¢do, em que estado representa a combinacao dos valores das

varidveis de entrada, e resposta o valor da varidvel de saida, todos representados por conjuntos

fuzzy.
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3.5.3 Modulo de inferéncia fuzzy

Nesta etapa cada proposi¢ao fuzzy € tratada com as ferramentas da légica fuzzy, ou seja, aqui se
definem os conectivos 16gicos (t-normas e t-conormas) usados para estabelecer a relacdo fuzzy
que modela a base de regras. Para Amendola, Souza e Barros (2005), “(...) é deste modulo que
depende o sucesso do sistema fuzzy jd que ele fornecerd a saida fuzzy a ser adotada pelo
controlador a partir de cada entrada fuzzy”. Dentre os métodos de inferéncia fuzzy, os mais
comuns na literatura sao o método de Mamdani e o método de Takagi-Sugeno-Kang (TSK).

Aqui, serd utilizado o método de Mamdani, detalhado no capitulo 4.

3.5.3.1 Moédulo de Defuzzificacdo

As saidas de um sistema de inferéncia fuzzy sdo compostas de conjuntos fuzzy, definidos pelas
varidveis de saida modeladas na etapa de fuzzificacdo e modificadas no médulo de inferéncia
fuzzy. Nesta etapa do controlador, o resultado fuzzy € transformado em um nimero real, em

contexto semelhante ao que ocorre na teoria estocastica, quando se usa a esperanca matematica

para indicar um valor que melhor represente uma varidvel aleatéria. Existem, na literatura,
diferentes métodos de defuzzificagdo que podem ser adotados, tais como o método do Centro
de Gravidade, método do Centro dos Maximos e o0 método da Média dos Maximos (BARROS

e BASSANEZI, 2010). Neste trabalho, serd adotado o primeiro método citado, descrito em

detalhes no capitulo 4.

No capitulo 4 serd descrito todo o processo de modelagem de um sistema de inferéncia fuzzy
para estimativa da umidade de um solo de acordo com as entradas de textura do solo, potencial

matricial e matéria organica do solo.
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4 Material e Meétodos

4.1 Regiao dos dados de solo analisados

A provincia petrolifera de Urucu, no Amazonas, € regido de exploracao de petrdleo e gés pela
Petrobras desde 1988. A unidade, denominada Base de Operacdes Gedlogo Pedro Moura
(UN-BSOL), estd situada no municipio de Coari, a 650 km de Manaus. Parte desta provincia,
onde se concentram trés pocos de extracdo, possui uma area de aproximadamente 50.000
hectares. A drea é coberta por Floresta Ombrofila Densa, ou seja, regido de temperaturas altas

com alto indice de precipitagdo bem distribuido durante o ano e densa vegetacao.

O estudo realizado em Petrobras (2010) abrangeu uma regido de 6.800 hectares dentro da
Provincia estrutural Amazonica, em que se localizam as jazidas, dreas de empréstimos,
estradas, dutos e respectivos entornos. Esta regido é composta por grande drea sedimentar,
compartimentada por altos do embasamento em trés bacias conhecidas como do Acre,

Solimdes e Amazonas.

A constru¢do do modelo deste trabalho teve como base os dados de solo da regido citada,
levantados em Petrobras (2010). A escolha desta regido se deu pelo fato de o orientador deste
trabalho, Prof. Dr. Marcos Bacis Ceddia, ser o coordenador do “Projeto Erosdao Hidrica em
Solos Amazodnicos”, publicado em Petrobras (2010), em convénio entre a empresa Petrobras
SA, a UFRRJ e a FAPUR (Fundacio de Apoio a Pesquisa Cientifica e Tecnolégica da UFRRYJ).
O projeto busca um levantamento detalhado de solos da regido amazodnica para compreender os
processos erosivos na mesma. A utilizacdo dos dados foi autorizada em proveito da construgao
de um modelo que, futuramente, possa auxiliar estudos de fluxo de 4gua em solos da Amazdnia
central. Estes estudos serdo facilitados pelo fato de diminuir a quantidade de dados coletados,
sendo necessdria apenas a verificacdo da textura do solo e quantidade de matéria organica para

estimar a retengdo de dgua pelo solo, reduzindo custos e tempo de andlise dos dados.
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4.2 Caracteristicas dos dados de solos analisados

Dos 121 perfis descritos em Petrobras (2010) apenas 44 perfis tiveram sua curva caracteristica
de umidade determinada, visto que o processo de coleta de amostras e anélise € muito
demorado. A escolha destes 44 perfis foi justificada pela andlise de perfis que representassem
os diferentes padrdes de solos da regido. Destes, foram selecionados 42 perfis para anélise e
constru¢ao do modelo, resultando em um total de 231 horizontes de solo. A exclusao de dois
perfis, reduzindo de 44 para 42 perfis analisados, ocorreu devido a um dos perfis nao
apresentar dados completos de textura e o outro nao apresentar dados necessarios para definir a
umidade volumétrica em unidade de atm. As varidveis analisadas foram textura do solo,

quantidade de matéria organica (g/kg) e umidade volumétrica do solo (cm3/cm?).

Dos 231 horizontes tomados para andlise inicial, 26,8% se encaixavam na classe textural
arenosa (até 15% de argila), 49,8% se encaixavam na classe textural média (15% a 35% de
argila), 22,9% na classe textural argilosa (de 35% a 60% de argila), e apenas um horizonte na
classe textural muito argilosa (mais de 60% de argila), porém com apenas 60,9% de argila em
sua composicao. Por este motivo, a classe textural muito argilosa ndo € considerada na

modelagem.

Analisando, separadamente, os horizontes superficiais (A, AB e AC) e os ndo superficiais (B,
C e suas combinacdes), verificou-se que, como esperado, os horizontes superficiais continham
maior quantidade de matéria organica do que os ndo superficiais. O maior valor de quantidade
de matéria organica dos horizontes ndo superficiais foi de 14,1 g/kg (o que representa 1,41%
da fracdo s6lida), porém com uma média de 4,6 g/kg (0,46%) e variancia de 4,5 g/kg (0,45%).
O histograma de distribui¢ao do teor de matéria organica dos horizontes ndo superficiais estéa
indicado na figura 4.1. Ja para os horizontes superficiais, os valores variam de 3 g/kg (0,3%) a
60,3 g/kg (6,03%), com mediana 10,85 g/kg e variancia de 55,4 g/kg. Esta alta variancia
ocorre devido ao valor maximo verificado. Este valor estd 30,7 g/kg maior que o segundo valor
de matéria organica mais alto, 29,6 g/kg. Por este motivo, como serd visto mais a frente, o

valor de 60,3 g/kg foi desconsiderado na modelagem.

Como o objetivo deste trabalho € verificar a influéncia da matéria organica na estimativa de
retencao de umidade do solo, e os horizontes que, pelos processos fisico-quimicos, conseguem
acumular um teor mais alto de matéria organica sdo os superficiais, a andlise deste trabalho
para construg¢do do controlador levou em conta somente os horizontes de classificacdo A, AB

ou AC (verificar anexo A).

O total de horizontes superficiais para andlise foi de 80 horizontes. Destes, 37 horizontes sdo
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Frequéncla

Matéria Organica (g/kg)

Figura 4.1: Distribuicao de frequéncia dos dados de matéria organica dos horizontes nao super-
ficiais do dados coletados em Petrobras (2010).

da classe textural arenosa, 41 sdo da classe textural média e apenas 2 da classe textural
argilosa. Esta quantidade baixa de horizontes com classe textural argilosa prejudica as
conclusdes para esta classe. Porém, como a argila possui alta drea especifica e apresenta carga
superficial (REICHARDT e TIMM, 2004; CEDDIA, 2013), o papel da argila na retencdo de
agua no solo € semelhante ao da matéria orginica. Logo, isto ndo prejudica as conclusoes

sobre a influéncia da matéria organica na retencao de dgua no solo.

4.3 Caracteristicas do modelo

Para constru¢do do sistema de inferéncia fuzzy (figura 4.2), as varidveis envolvidas foram
analisadas estatisticamente, segundo sua distribui¢cd@o, para a definicdo dos conjuntos fuzzy e
termos linguisticos representativos. A construcao desses conjuntos, bem como a elaboragao

das regras do sistema de inferéncia, sdo descritas a seguir.

Fuzzificagio

Textura l
do solo

Base de regras
Potencial Umidade
Matricial — l — do solo

Inferéncia de Mamdani

Matéria
Organica l

Defuzzificagao

Figura 4.2: Arquitetura do controlador para estimar umidade volumétrica do solo (cm?/cm?)
segundo entradas de textura (percentual de argila em decimal), potencial matricial (em atm) e
quantidade de matéria organica (em g/kg).
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4.3.1 Fuzzificacdo

4.3.1.1 Textura

Conforme visto no capitulo 2, se¢ao 2.1, Embrapa (2006) sugere a jun¢do de grupos de textura
formando novas classes texturais. Essas classes podem levar em conta apenas o teor de argila
presente na fracao sélida, visto que a argila € a fracdo granulométrica que possui mais

caracteristicas favordveis a retencdo de dgua se comparada com as fracdes de areia e silte.

Deste modo, a textura foi considerada com trés intervalos abrangendo as classes arenosa,
média e argilosa (tabela 4.1), cada uma delas como um conjunto fuzzy do tipo fuzzy triangular
(figura 4.3). A intersecao entre os intervalos de classe foi considerada conforme Belleza
(2014), pois um dos objetivos € poder comparar os novos resultados. Essa interse¢ao é
conveniente para as incertezas do parametro, ja que considera intervalos de transi¢do entre as
faixas de textura. Do contrério, valores de textura que estivessem exatamente no ponto de
transi¢do entre os numeros fuzzy teriam valor nulo na funcio grau de pertinéncia, e isto leva a

uma nao influéncia destes valores de textura no modelo.
Como foi observado somente um horizonte de classe muito argilosa (mais de 60% de argila), o

intervalo de textura considerado foi de 0 a 0,6 (x100% de argila).

Tabela 4.1: Representacdes dos conjuntos fuzzy para as classes de textura consideradas no sis-
tema de inferéncia.

Textura do solo | Conjunto Fuzzy
Arenosa (T1) [0; 0; 0,20]

Média (T2) [0,15; 0,25; 0,35]

Argilosa (T3) | [0,30; 0,60; 0,60]

p(x)

T Y T

0O 01 02 03 04 05 06
%100% de argila

Figura 4.3: Fungdes de pertinéncia da variavel textura do solo, de acordo com os parametros de
numero fuzzy triangular da tabela 4.1
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4.3.1.2 Potencial Matricial

Como foi visto no capitulo 2, o potencial matricial, for¢a responsavel por reter a umidade no
solo, possui valor negativo. Neste trabalho € utilizado o termo potencial matricial para o seu
valor absoluto, como ocorre em diferentes trabalhos relacionados. Seu valor normalmente
utilizado considera o intervalo de 0 a 15 atm. Em particular, a umidade € calculada nos valores
de potenciais com medidas: 0, 0,1, 0,3, 0,6, 1, 3, 4, 5 e 15 atm. Belleza (2014) considera 7
intervalos de niimeros fuzzy triangulares para esta varidvel, definidos sob o aconselhamento de
um especialista da area, Prof. Dr. Marcos Bacis Ceddia, do departamento de Solos do Instituto
de Agronomia da Universidade Federal Rural do Rio de Janeiro. Esta divisao leva em conta
construir uma quantidade minima de conjuntos fuzzy que contenham cada um dos valores de

potencial normalmente utilizados em fisica do solo, ja citados neste paragrafo.

Neste trabalho, foram considerados 7 conjuntos fuzzy, sendo 6 do tipo triangular, compativeis
com os primeiros 6 intervalos observados em Belleza (2014) e 1 do tipo trapezoidal (figura 4.4
e tabela 4.2), em substituicao ao ultimo intervalo triangular do trabalho citado. Esta
modificacio pretendeu diminuir a amplitude deste ultimo intervalo, considerando um grau 1 de
pertinéncia aos valores de potencial matricial a partir de 7 atm. Cabe ressaltar que o intervalo
de maior importancia para este trabalho vai de 0 a 5 atm. Portanto, para valores maiores que 5

atm € sugerido aumentar o nimero de intervalos de classe desta varidvel.

Tabela 4.2: Representacgdes dos conjuntos fuzzy para as classes de potencial matricial conside-

radas no sistema de inferéncia.

Potencial Matricial | Conjunto Fuzzy
Baixissimo (PM1) [0; 0; 0,1]
Muito Baixo (PM2) | [0,05; 0,2; 0,3]
Baixo (PM3) [0,2; 0,4; 0,5]
Médio Baixo (PM4) | [0,4;0,75; 1]
Médio Alto (PM5) [0,75; 2; 3]
Alto (PM6) [2;4; 5]
Muito Alto (PM7) [4;7;15; 15]
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Potencial Matricial (atm)

Figura 4.4: Func¢des de pertinéncia da varidvel potencial matricial, de acordo com os paradmetros
de nimero fuzzy triangular e trapezoidal da tabela 4.2

4.3.1.3 Matéria organica

Para a varidvel matéria orginica foram considerados 4 conjuntos fuzzy do tipo triangular,
denotados na tabela 4.3 e no grafico das suas funcdes de pertinéncia (figura 4.5). Para
considerar esta divisdo, a andlise, descrita a seguir, foi feita sobre os dados de matéria orginica
dos horizontes superficiais considerados, organizados segundo sua distribui¢ao de valores e a

opinido do especialista consultado.

Definidas 4 faixas de maior concentracio de valores de matéria organica, foram verificados os
desvios padrio e a moda dos dados amostrais de cada intervalo para formag@o dos conjuntos
fuzzy. O valor da moda, em cada intervalo, representa o valor que possui grau 1 na fun¢ao grau
de pertinéncia. Os limites inferior e superior de cada intervalo foram modificados de acordo

com os seus desvios padrdo da seguinte forma:

e O limite inferior é diminuido do valor do desvio padrdo do intervalo, desde que ndo resulte
em nimero menor ao valor que possui grau 1 na fun¢do grau de pertinéncia do ndmero
fuzzy exatamente anterior, se houver. Caso contrdrio, o limite inferior do conjunto fuzzy

passa a ser este valor.

e O limite superior € acrescido do valor do desvio padrao do intervalo, desde que nao resulte
em numero maior ao valor que possui grau 1 na fun¢do grau de pertinéncia do nimero
fuzzy exatamente posterior, se houver. Caso contrdrio, o limite superior do conjunto fuzzy

passa a ser este valor.
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Esta modificacdo dos limites dos intervalos permitiu a formacao de intersecao entre os
intervalos adjacentes, convenientes a subjetividade da transicao entre as classes de teor de

matéria organica.

Com o intuito de ndo comprometer a andlise estatistica dos dados de matéria organica, foi
necessario remover o valor do perfil P0O65-A, pois o seu teor de matéria organica se distanciava
de modo significativo dos outros dados amostrais. Dos dados amostrais, cerca de 56% se
encaixam na classe de matéria organica baixa, 52% na classe média baixa, 18% na classe

média e 16% na classe alta.

Tabela 4.3: Representacdes dos conjuntos fuzzy para as classes de matéria organica consideradas
no sistema de inferéncia.

Matéria Orgénica N°Fuzzy
Baixa (MOI) [3;7,8; 11,2]
Meédia baixa (MO2) | [8,97; 11,2; 17,33]
Média (MO3) [14,68; 18; 20,92]
Alta (MO4) [18,65; 21,1; 29,6]

MO1 MO?2 MO3  MO4

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Matéria Organica (g/cm?®)

Figura 4.5: Fungdes de pertinéncia da varidvel matéria organica, de acordo com os parametros
de nimero fuzzy triangular da tabela 4.3

4.3.1.4 Umidade do solo

Para fuzzificacdo da variavel umidade volumétrica do solo, foram considerados os dados de
umidade observados para os horizontes analisados. Os dados de umidade foram divididos em 7
intervalos de acordo com os dados amostrais de ocorréncia. Cada intervalo foi analisado de
forma semelhante a feita na varidvel matéria organica. Novamente, o desvio padrao de cada
intervalo permitiu uma modificagdo nos limites inferior e superior, € a moda de cada intervalo,
considerando arredondamentos de até 3 casas decimais, definiu os valores com grau 1 na

funcdo grau de pertinéncia.
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Os intervalos dos conjuntos fuzzy, bem como os termos linguisticos considerados, podem ser

verificados na tabela 4.4 e as fun¢des de pertinéncia constam no gréfico 4.6.

Tabela 4.4: Representacdes dos nimeros fuzzy para as classes de umidade volumétrica do solo
consideradas no controlador.

Umidade do solo Conjunto Fuzzy

Baixa (Ul) [0,12; 0,18; 0,21]
Meédia Baixa (U2) | [0,183; 0,215; 0,246]
Média (U3) [0,219; 0,272; 0,312]
Média Alta (U4) | [0,273; 0,319; 0,395]

Alta (US) [0,358; 0,41; 0,45]

Muito Alta (U6) [0,41; 0,488; 0,51]
Altissima (U7) [0,49; 0,529; 0,588]

p(z)
Ul 12 y3 U4 Us Ue U7

01 015 02 025 03 035 04 045 05 055 06

umidade volumétrica (cm®.cm™?)
Figura 4.6: Fung¢des de pertinéncia da varidvel umidade do solo, de acordo com os parametros

de nimero fuzzy triangular da tabela 4.4

4.3.2 Base de regras

Para a construcao da base de regras, do tipo Se...Entdo, do sistema de inferéncia fuzzy, foram
analisadas as umidades observadas nos dados para cada proposi¢ao considerada.
Por exemplo, para a proposi¢ao:

Se textura € arenosa e Potencial Matricial € baixo e Matéria Organica é baixa Entao Umidade

do solo € Alta,

a obtencao da resposta “Umidade do solo é Alta” foi feita de acordo com observacao do

espaco amostral de umidade para os horizontes que se encaixam neste perfil: textura arenosa,
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potencial matricial baixo e matéria organica baixa. Como a maioria dos valores observados
nos dados amostrais de umidade se encaixa no intervalo de umidade alta, a saida é considerada

sendo deste tipo.

A tabela 4.5 indica as regras formuladas para o controlador fuzzy.

Tabela 4.5: Base de regras para o sistema de inferéncia fuzzy de estimativa de umidade do solo.

Textura T1 T2 T3

Mat. Org. | MO1 | MO2 | MO3 | MO4 | MO1 | MO2 | MO3 | MO4 | MO1 | MO2 | MO3 | MO4

P1 U6 U6 U7 U7 U6 U6 u7 u7 [8[) U6 u7 u7

P2 us us U6 us us us us [8[) uUs uUs U6 U6

P3 U4 U4 uUs U4 U4 uUs U4 uUs Us uUs uUs uUs

P4 U4 U4 U5 U4 U4 uUs U4 uUs U4 uUs Us Us

PS Ul U2 U3 U2 U3 U4 U2 U4 U3 U3 U4 U4

Pot. Matricial

P6 Ul U2 U3 U2 U3 U4 U2 U4 U3 U3 U4 U4

P7 Ul U2 u3 U2 u3 u3 U2 U4 U3 U3 U3 U4

4.3.3 Inferéncia Fuzzy

Como método de inferéncia para o sistema de inferéncia fuzzy foi escolhido o Método de
Inferéncia de Mamdani, por ser mais simples e intuitivo (BARROS e BASSANEZI, 2010).
Este método ¢ utilizado em diversos trabalhos relacionados (SOUZA, 2007; LIMA et al.,
2010; BELLEZA, 2014; AFONSO, NETTO e VASCONCELLOQOS, 2014). A inferéncia de

Mamdani utilizada neste trabalho se baseia na composi¢do max-min, conforme segue abaixo:

e Em cada R;, da base de regras, a condicional “se x é A; entdo u é B;” é modelada pela

aplicagdo A (minimo);
e 0 conectivo légico e € modelado pela t-norma A (minimo);

e 0 conectivo légico ou € modelado pela t-conorma V (maximo).

Em outras palavras, aplicando uma certa entrada x = (1, 3, ..., £, ) no controlador fuzzy, uma
ou mais regras sdo ativadas, indicando o conjunto fuzzy de saida indicado na base de regras.
Primeiro é considerado qual destes valores de entrada possui menor valor na sua func¢ado de

pertinéncia, digamos z;, com valor de pertinéncia ¢(z;). A saida fuzzy em cada regra R;,
segundo Mamdani, serd composta pelo conjunto fuzzy de saida com altura até ¢(x;). Caso
ative mais de uma regra, serd feita a unido entre as saidas, pelo operador maximo. As figuras

4.7 e 4.8 ilustram este processo.
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PM3

MO: U4
PM3 -

0.273 0.3

Figura 4.7: Inferéncia de Mamdani para entradas de textura com 26% de argila, potencial ma-
tricial de 0,3 atm e matéria organica com 16 g/kg. Observe que esta entrada ativa duas regras
(Rss € R45). Na primeira, o menor grau de pertinéncia pertence a matéria organica, gerando
um subconjunto fuzzy de US na saida, conforme indicado. Da mesma forma ocorre na segunda
regra.

0.5 1 ! N i

0.273 0.45

Figura 4.8: Da unido das duas saidas ilustradas na figura 4.7 tem-se o subconjunto fuzzy de
saida pela inferéncia de Mamdani
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4.3.4 Defuzzificacao

A saida gerada pela Inferéncia de Mamdani € um subconjunto fuzzy. Por fim, € preciso indicar
qual valor real esta saida representa. O método de defuzzificacdo utilizado neste trabalho foi o
Centro de Gravidade, ou Centro de Area, por ser o mais comumente utilizado. Neste método, o
valor real é dado pela média das areas de todas as figuras que representam os graus de
pertinéncia de um subconjunto fuzzy, ou seja, é o valor real do dominio do subconjunto fuzzy
que divide pela metade a drea definida pelo grafico desse subconjunto. Segundo Barros e
Bassanezi (2010), “(...) este método é semelhante a média aritmética para uma distribuigcdo de

frequéncias de uma dada varidvel, com a diferenca de que os pesos sdo os valores i (u)”,

para todo u pertencente ao intervalo de defini¢do do conjunto fuzzy A.

As equacdes 4.1 e 4.2 representam o valor do centro de gravidade para dominios discretos e

continuos, respectivamente.

_ Z?:o UiMA(Ui)
4= Yoo pialui) @D

 Jpupa(u)du “2)

G(A) = (NI

A figura 4.9 ilustra esse método.

L

0.273 0.352 0.45

Figura 4.9: Pelo método do Centro de Gravidade, para o exemplo visto na figura 4.8, o valor
real de saida de umidade serd 0,352 cm?/cm?
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4.4 Utilizacio do software Matlab®

Toda a simulag@o computacional foi feita através do Fuzzy Logic Toolbox, disponibilizado no
software Matlab®, utilizado em cooperagiio com o Prof. Dr. Jodo Frederico C. de A. Meyer,

DMA-Unicamp. Este toolbox dispde de arquivos e fungdes que auxiliam o uso da teoria fuzzy.

Para utilizacdo do foolbox, é necessdrio informar as varidveis de entrada e saida, definindo os
seus intervalos com a escolha do conjunto fuzzy desejado para representar cada intervalo. Em
seguida, opta-se pela inferéncia de Mamdani ou de TSK. A figura 4.10 indica a tela inicial

deste toolbox, ja com as defini¢cdes de varidveis e inferéncia fuzzy.

-

FIS Editor: Controle Fuzzy para Umidade =RRCN X

File Edit View

-

Controle Fuzzy para Umidade

X o

Fi

(mamdani}

. :

MO

FIS Name: Controle Fuzzy para Umidade FIS Type: mamdani

And method — - Current Variable
Name
Or method max =
— Type
Implication — -
Range
Aggregation — -
Defuzzification el - Help Close

Updating Membership Function Editor

Figura 4.10: Tela inicial do Fuzzy Logic Toolbox (MATLAB®), com as varidveis de entrada e
saida do controlador.

A definicdo das regras do sistema de inferéncia € feita manualmente, com a escolha das

varidveis das proposicdes e os conectivos entre elas, como mostra a figura 4.11.

Para gerar as saidas do sistema de inferéncia fuzzy, ja defuzzificadas pelo método do Centro de
Gravidade, basta entrar com os valores das varidveis de entrada. Na tela de saida (figuras 4.12
e 4.13) observa-se 4 colunas. As 3 primeiras indicam as varidveis de entrada do sistema e a
ultima indica a varidvel de saida do sistema. Ao definir os valores de entrada € possivel
observar a formacao de linhas verticais nas colunas das varidveis de entrada, que percorrem
todos as regras verificando quais serdo ativadas. O resultado, pela inferéncia de Mamdani, é

mostrado na dltima linha da dltima coluna, com o valor de saida, defuzzificado, na primeira
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2. IF (TS is T1) and (PM is P2) and (MO is M1) then (US is US} (1}
3. I (TS is T1) and (PM is P3) and (MO is M1) then (US is U4} (1}
4. 1f (TS is T1) and (PM is P4) and (MO is M1) then (US iz U3} (1)
5. If (TS is T1) and (PM is PS) and (MO is M1) then (US is U1} (1}
6. If (TS is T1} and (PM is PE) and (MO is M1) then (US is U1} (1}
7. If (TS is T1) and (PM is P7) and (MO is M1) then (US is U1} (1}
|2, IF (TS is T} and (PM is P1) and (MO is M2) then (US is US} (1}
5. If (TS is T1) and (PM is P2) and (MO is M2) then (US is US) (1}
10, IF (TS is T1) and (PM is P3) and (MO is M2} then (US is U4) (1}

Figura 4.11: Tela de entrada de regras do sistema de inferéncia pelo Fuzzy Logic Toolbox
(MATLAB®).

linha. As figuras 4.12 e 4.13 ilustram um exemplo de saida pelo roolbox.
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5 Resultados

A validag¢ao de um modelo consiste em demonstrar que ele é uma representacao razoavel do
sistema que se esteja modelando. Em outras palavras, é mostrar que ele reproduz o
comportamento do sistema com fidelidade o suficiente para satisfazer os objetivos da andlise
desejada. Para tanto, € preciso sortear de forma aleatdria alguns dados dentre o espaco

amostral que serdo utilizados na validagao do modelo.

Para o modelo apresentado neste trabalho € verificada a formacdo de 12 grupos de combinacao
entre classes de textura e matéria organica: TS arenosa/MO baixa, TS arenosa/MO média
baixa, TS arenosa/ MO média, TS arenosa/ MO alta, TS média/MO baixa, TS média/MO

média baixa, TS média/ MO média, TS média/ MO alta, TS argilosa/MO baixa, TS

argilosa/MO média baixa, TS argilosa/ MO média e TS argilosa/ MO alta. Como ndo houve a
ocorréncia de horizontes que fagcam parte dos trés ultimos grupos da combinagdo citada,

apenas os nove primeiros grupos foram considerados na validagdo. Com isso, visando analisar

a eficiéncia do modelo em cada uma destas combinacdes possiveis, foram sorteados
préviamente, de forma aleatoria, 9 horizontes para validacdo, sendo que cada horizonte esteja

em uma das combinagdes de textura e matéria organica citadas anteriormente.

A seguir, tem-se uma breve descricao dos horizontes sorteados para avaliacao:
P103-AB profundidade de 19-36 cm; cores bruno-amarelado a bruno-amarelado-claro; textura
franco-arenosa (arenosa, na classificacao simplificada);

P057-A profundidade de 0-13 cm de profundidade; cores cinzento a e cinzento-claro; textura

franco-arenosa (arenosa, na classifica¢ao simplificada);

P051-A profundidade de 0-7 cm; cor amarelo-avermelhado; textura franca (arenosa, na classi-

ficacdo simplificada);

P058-A profundidade de 0-5 cm; cor bruno (parda); textura areia-franca (arenosa, na classifi-

cacdo simplificada);
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P049-AB profundidade de 4-16 cm; cor bruno-amarelado; textura franco-siltosa (média, na

classificacdo simplificada);

P061-AB profundidade de 7-32 cm; cor bruno-avermelhado; textura franco-argiloarenosa (mé-

dia, na classificacdo simplificada);

P049-A profundidade de 0-4 cm; cor Bruno-amarelado-escuro; textura franca (média, na clas-

sificacdo simplificada);

P106-A profundidade de 0-7 cm; cor bruno-amarelado-escuro; textura franco-arenosa (média,

na classificacio simplificada);

P055-AB profundidade de 10-39 cm; cor bruno; textura argiloarenosa (argilosa, na classifica-

¢ao simplificada).

As tabelas 5.1 a 5.9 mostram os resultados de validacao do sistema de inferéncia fuzzy
proposto em rela¢do aos dados de Petrobras (2010). Como o objetivo € verificar se a matéria
organica pode melhorar os resultados da modelagem, os resultados também foram comparados
aos resultados do sistema de inferéncia proposto por Belleza (2014). Os erros considerados
foram absolutos, comumente utilizados em trabalhos na area de solos. Entretanto, no ambiente
da matemética aplicada e da modelagem matemaética e computacional deve ser considerado o
erro relativo, que representa de forma mais significativa o erro cometido independentemente
das grandezas envolvidas. Os erros relativos serdo analisados por valores de potencial

matricial ao final deste capitulo.

Tabela 5.1: Estimativas e comparacdes para o perfil P103-AB, com 13% de argila e 7,9 g/kg de
matéria organica.

Pot. Matricial Umidade real Novo Modelo Belleza (2014)
(atm) (cm?.em™)  Estimado Erro Abs. Estimado Erro Abs.

0 0,488 0,464 2,42% 0,486 0,22%
0,1 0,406 0,405 0,08% 0,42 1,42%
0,3 0,326 0,332 0,57% 0,331 0,47%
0,6 0,276 0,332 5,61% 0,331 5,51%
1 0,168 0,166 0,23% 0,118 5,03%

3 0,168 0,167 0,10% 0,117 5,10%
4 0,163 0,167 0,35% 0,117 4,65%

5 0,163 0,167 0,45% 0,12 4,25%
Média dos Erros 1,23% 3,33%

O perfil P103-AB (tabela 5.1) foi o que apresentou menor média de erro absoluto dentre os

perfis de validacao, tendo uma redugdo de 2,11 pontos percentuais de Erro Absoluto Médio
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Curvas de retencéo para o perfil 103-A8
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Figura 5.1: Curvas de retencao para o perfil P103-AB.

(EAM) com o modelo de Belleza (2014). O maior erro absoluto foi verificado para um
potencial de 0,6 atm, e justifica-se pelo fato de o valor real de umidade estar muito préximo do
limite inferior do intervalo de dominio do conjunto fuzzy considerado como resposta na regra
em que se encaixa o perfil. Como o método de defuzzificagdao adotado € o de centro de
gravidade o valor de saida se encontra proximo do centro do intervalo de dominio do conjunto
fuzzy, como visto na figura 4.9 do capitulo anterior, € isto justifica uma margem de erro para o
valor estimado. A figura 5.1 ilustra as curvas de reten¢do dos dois modelos em comparagdao

aos dados coletados.

Tabela 5.2: Estimativas e comparagdes para o perfil PO5S7-A, com 2% de argila e 11 g/kg de
matéria organica.

Pot. Matricial Umidade real Novo Modelo Belleza (2014)
(atm) (ecm?.em™)  Estimado Erro Abs. Estimado Erro Abs.

0 0,494 0,469 2,49% 0,48 1,39%
0,1 0,404 0,405 0,06% 0,42 1,56%
0,3 0,334 0,331 0,28% 0,332 0,18%
0,6 0,297 0,33 3,28% 0,332 3,48%
1 0,210 0,201 0,91% 0,118 9,21%

3 0,196 0,207 1,08% 0,116 8,02%

4 0,193 0,209 1,56% 0,114 7,94%

5 0,191 0,205 1,39% 0,12 7,11%
Média dos Erros 1,38% 4,86%

A resposta do modelo para o perfil PO57-A, detalhada na tabela 5.2, foi bastante significativa
para os valores de potencial matricial a partir de 0,6 atm, se comparado com o trabalho

anterior. Apenas no potencial de 0 atm, assim como ocorreu com o perfil P103-AB, este
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Curvas de retencédo para o perfil 57-A
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Figura 5.2: Curvas de retencao para o perfil P057-A.

modelo novo apresentou erro maior que o modelo comparado. Houve uma diminui¢do de 3,48
pontos percentuais de EAM, que implica uma reducdo de 71,6% de EAM. A figura 5.2 ilustra
as curvas de retenc¢ao para este perfil, indicando uma melhora acentuada nas estimativas pelo

novo modelo a partir de 1 atm de potencial matricial.

Tabela 5.3: Estimativas e comparacdes para o perfil PO51-A, com 13% de argila e 16 g/kg de
matéria organica.

Pot. Matricial Umidade real Novo Modelo Belleza (2014)
(atm) (ecm®.em™)  BEstimado Erro Abs. Estimado Erro Abs.

0 0,539 0,508 3,07% 0,486 5,27%
0,1 0,452 0,441 1,11% 0,42 3,21%
0,3 0,389 0,37 1,93% 0,331 5,83%
0,6 0,352 0,37 1,79% 0,331 2,11%
1 0,274 0,246 2,78% 0,118 15,58%

3 0,261 0,252 0,85% 0,117 14,35%

4 0,258 0,252 0,61% 0,117 14,11%
5 0,241 0,251 1,02% 0,12 12,08%
Média dos Erros 1,65% 9.07%

Para o perfil PO51-A, o resultado do modelo proposto (tabela 5.3) foi o que apresentou maior
diminui¢do de EAM, 7,42 pontos percentuais, ou seja, uma redugdo de 81,8% de erro. A partir
de um potencial de 1 atm, o modelo apresentou resultados bem melhores que o modelo

comparado. A figura 5.3 ilustra as curvas de retengdo para este perfil.

Comparando com o modelo de Belleza (2014), o perfil PO58-A apresentou uma diminui¢do de
EAM de 4,81 pontos percentuais, tendo um erro absoluto maior apenas para os potenciais de 0

e 0,1 atm, conforme consta na tabela 5.4. O erro de 4,77% verificado para o primeiro valor de
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Tabela 5.4: Estimativas e comparacdes para o perfil P0O58-A, com 6% de argila e 20,4 g/kg de
matéria organica.

Pot. Matricial Umidade real Novo Modelo Belleza (2014)
(atm) (ecm?.em™)  Estimado Erro Abs. Estimado Erro Abs.
0 0,488 0,536 4,77% 0,482 0,63%
0,1 0,411 0,426 1,48% 0,42 0,88%
0,3 0,340 0,346 0,59% 0,332 0,81%
0,6 0,353 0,345 0,82% 0,332 2,12%
1 0,235 0,245 1,03% 0,118 11,67%
3 0,232 0,234 0,17% 0,116 11,63%
4 0,223 0,232 0,89% 0,114 10,91%
5 0,227 0,239 1,16% 0,12 10,74%
Média dos Erros 1,36% 6,17%
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Figura 5.4: Curvas de retencdo para o perfil PO58-A.
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potencial pode ser justificado pelo fato de o valor real de umidade estar fora da faixa
considerada como resposta para a regra ativada por este perfil. As regras ativadas pelo conjunto
de valores das varidveis de entrada deste perfil, juntamente com o valor de potencial de 0 atm,
foram as regras R;5 € o2, que consideram a saida de umidade U7, ou seja, estando no
intervalo real [0.49, 0.588]. Porém, o valor observado para este caso foi de 0,488 atm, que estd
fora do intervalo de saida para a estimativa, ratificando a justificativa do erro elevado discutido.

A figura 5.4 ilustra as curvas de retengdo para este perfil de acordo com os dois modelos.

Tabela 5.5: Estimativas e comparacdes para o perfil P049-AB, com 17% de argila e 7,8 g/kg de
matéria organica.

Pot. Matricial Umidade real Novo Modelo Belleza (2014)
(atm) (em3.cm™)  Estimado Erro Abs. Estimado Erro Abs.

0 0,437 0,462 2,47% 0,454 1,67%
0,1 0,397 0,404 0,72% 0,396 0,08%
0,3 0,366 0,333 3,33% 0,33 3,63%
0,6 0,372 0,333 3,90% 0,33 4,20%
1 0,265 0,224 4,12% 0,197 6,82%

3 0,263 0,224 3,92% 0,197 6,62%

4 0,255 0,224 3,06% 0,197 5,76%

5 0,254 0,224 2,99% 0,15 10,39%
Média dos Erros 3,06% 4,90%
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Figura 5.5: Curvas de retengdo para o perfil PO49-AB.

O perfil P0O49-AB foi o que apresentou maior EAM para o modelo proposto, tendo, ainda
assim, uma diminui¢do de 1,83 pontos percentuais de EAM em relacdo ao modelo comparado,
verificado na tabela 5.5. A justificativa para os valores altos de erro absoluto neste perfil estd

na ativacdo de mais de uma regra por ele e, estas duas regras possuem saidas bastante distintas.



57

Como o valor de textura (17% de argila) se enquadra tanto na classe arenosa (T1) quanto
média (T2), as regras ativadas para determinar a saida sdo sempre duas. O valor de matéria
organica deste perfil se enquadra na classe baixa (MO1). Verificando na tabela 4.5, no capitulo
anterior, de 0 a 0,6 atm o resultado das regras ativadas sdo os mesmos. Porém, de 1 a 5 atm as
regras ativadas em cada potencial sdo diferentes: para 1 atm (P5) sdo ativadas as saidas de
umidade U1 e U3, repetindo este fato para o valores de potencial 3 (P6), 4 (P6) e 5 (P7) atm.
Com a combinacdo dos niimeros fuzzy U1 e U3 na saida pela inferéncia de Mamdani e a
defuzzificacdo pelo centro de gravidade, o valor estimado serd dado por um valor que esta
situado no fim ou no inicio dos intervalos U1 e U3, respectivamente, considerando o centro da
area dessa regido formada. O valor verificado, em todos os valores de potencial a partir de 1
atm, sdo iguais a 0,224 cm3 / em?, distante dos valores observados que, na totalidade, possuem
grau de pertinéncia maior a classe de umidade U3. A figura 5.5 ilustra as curvas de retenc¢do

para este perfil.

Tabela 5.6: Estimativas e comparagdes para o perfil PO61-AB, com 30% de argilae 11,2 g/kg
de matéria organica.

Pot. Matricial Umidade real Novo Modelo Belleza (2014)
(atm) (ecm?.em™®)  Estimado Erro Abs. Estimado Erro Abs.

0 0,456 0,466 1,02% 0,42 3,58%
0,1 0,431 0,405 2,57% 0,371 5,97%
0,3 0,416 0,405 1,05% 0,332 8,35%
0,6 0,422 0,405 1,70% 0,332 9,00%
1 0,363 0,333 3,03% 0,269 9,43%

3 0,351 0,331 2,00% 0,268 8,30%

4 0,343 0,331 1,19% 0,268 7,49%
5 0,330 0,267 6,33% 0,2 13,03%
Média dos Erros 2,36% 8,14%

O perfil PO61-AB, conforme a tabela 5.6, apresentou melhores resultados pelo modelo
proposto, em comparacdo com o modelo anterior. Houve uma diminui¢do de 5,78 pontos
percentuais de EAM. O valor alto de erro para o potencial de 5 atm, 6,33%, se justifica pelo
fato de o valor de umidade real, para este perfil sorteado, estar fora da faixa considerada para a
regra. A faixa de umidade considerada pela regra ativada (R2,42) pelas varidveis de entrada deste
perfil sob o potencial de 5 atm é U3, cujo dominio estd no intervalo [0.219, 0.312], que ndo
abrange o valor observado para o potencial citado. De acordo com a figura 5.6, os valores
estimados pelos dois modelos para este perfil ficaram abaixo do esperado para a maioria dos

valores de potencial matricial.

Para o perfil P049-A, o modelo apresentou pouca diferenga na melhora de estimativa de
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Tabela 5.7: Estimativas e comparagdes para o perfil P049-A, com 17% de argila e 18,7 g/kg de

matéria organica.

Pot. Matricial Umidade real Novo Modelo Belleza (2014)
(atm) (ecm?.em™)  Estimado Erro Abs. Estimado Erro Abs.
0 0,569 0,539 2,96% 0,454 11,46%
0,1 0,396 0,429 3,32% 0,396 0,02%
0,3 0,337 0,356 1,90% 0,33 0,70%
0,6 0,347 0,356 0,93% 0,33 1,67%
1 0,228 0,25 2,23% 0,197 3,07%
3 0,226 0,25 2,42% 0,197 2,88%
4 0,216 0,25 3,39% 0,197 1,91%
5 0,214 0,25 3,61% 0,15 6,39%
Média dos Erros 2,59% 3,51%
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umidade em comparacdo com o modelo de Belleza (2014), conforme mostra a tabela 5.7.
Verificando o grafico 5.7, pode-se perceber que o modelo proposto, em geral, superestimou os
valores de umidade, enquanto que o modelo anterior comparado subestimou-os. Este fato tem

relacdo com a inclusdo da matéria organica. No modelo proposto, espera-se que a matéria
organica facilite os processos de retencao de dgua no solo, levando a valores altos de umidade

retida conforme verificado nos resultados estimados. Isto ja ndo acontece no modelo
comparado, que ndo considera a influéncia de matéria orgénica e, por isto, tem seus valores de

umidade subestimados para perfis que possuam valores altos de matéria organica.

Tabela 5.8: Estimativas e comparagdes para o perfil P106-A, com 15% de argila e 22,8 g/kg de
matéria organica.

Pot. Matricial Umidade real Novo Modelo Belleza (2014)
(atm) (ecm®.em™®)  BEstimado Erro Abs. Estimado Erro Abs.

0 0,560 0,538 2,21% 0,488 7,21%
0,1 0,427 0,404 2,33% 0,42 0,73%
0,3 0,344 0,332 1,21% 0,33 1,41%
0,6 0,296 0,332 3,58% 0,33 3,38%
1 0,206 0,215 0,91% 0,118 8,79%

3 0,203 0,215 1,24% 0,118 8,46%

4 0,198 0,215 1,75% 0,118 7,95%
5 0,196 0,215 1,95% 0,12 7,55%
Média dos Erros 1,90% 5,69%

Curvas de retengdo para o perfil 106-A
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Figura 5.8: Curvas de retencao para o perfil P106-A.

Pelo gréfico 5.8 e tabela 5.8 verifica-se que, mesmo com um EAM de 1,9%, o novo modelo

proposto ajusta de forma mais satisfatéria os valores de umidade para o perfil P106-A.
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Tabela 5.9: Estimativas e comparagdes para o perfil P055-AB, com 36% de argila e 10,6 g/kg
de matéria organica.

Pot. Matricial Umidade real Novo Modelo Belleza (2014)
(atm) (ecm?.em™)  Estimado Erro Abs. Estimado Erro Abs.

0 0,458 0,462 0,42% 0,42 3,78%
0,1 0,432 0,404 2,85% 0,42 1,25%
0,3 0,370 0,404 3,45% 0,37 0,05%
0,6 0,379 0,363 1,64% 0,37 0,94%
1 0,287 0,266 2,08% 0,37 8,32%

3 0,285 0,266 1,94% 0,33 4,46%

4 0,279 0,266 1,26% 0,33 5,14%

5 0,272 0,266 0,65% 0,33 5,75%
Média dos Erros 1,79% 3,71%
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Figura 5.9: Curvas de retengdo para o perfil P0O55-AB.
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Por fim, o perfil PO55-AB obteve uma diminui¢cdo de EAM de 1,92 pontos percentuais, sendo
insatisfatorio somente para os valores 0,1 e 0,3 atm de potencial. A tabela 5.9 detalha os
valores de estimativas e os erros para os dois modelos, e a figura 5.9 ilustra as curvas de

retencao para este perfil.

Em geral, como se pode observar no grifico 5.10, o novo sistema de inferéncia, considerando o
teor de matéria organica presente no solo, obteve melhores resultados segundo os EAMs.
Apenas no potencial matricial 0,1 atm a diferenga de EAMs foi pequena, porém com um valor

médio menor que o controlador comparado.

O maior EAM por potencial matricial verificado foi de 2,58% e dos 8 pontos de potencial

matricial, 5 obtiveram EAM abaixo de 2%, valor considerado aceitavel.
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Figura 5.10: Erros absolutos médios totais por valores de potencial matricial.

O erro absoluto médio total verificado para o modelo nos perfis de validacdo é de 1,92%,
estando abaixo do limite aceitavel de 2% para métodos indiretos de determinacio de umidade
do solo (GARDNER, 1986, apud BELLEZA, 2014). Dos 9 perfis sorteados para validacao do

modelo, 6 possuem erro absoluto médio abaixo de 2% e, dos 72 resultados verificados em

todos os perfis de validacao, 58,3% possuem erro absoluto menor que 2%.

O gréfico 5.11 mostra que apesar de o0 modelo apresentar erros relativos médios por potencial
relativamente altos, as estimativas foram melhores em comparag¢ao ao modelo apresentado

anteriormente por Belleza (2014), sobretudo para valores de potenciais acima de 0,6 atm.
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Figura 5.11: Erros relativos médios totais por valores de potencial matricial.
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6 Conclusdo

A escolha da teoria de l6gica fuzzy, através de um sistema de inferéncia fuzzy, para obtengcao
dos valores de umidade volumétrica do solo mostra-se bastante eficaz. A modelagem de
fendmenos deste tipo deve levar em conta as incertezas que os cercam, o que a logica fuzzy
trata de forma eficiente. Também, serve como um auxilio a metodologias empiricas, sem
substitui-las, disponibilizando um método de célculo simples e rdpido quando os dados sao

imprecisos ou provenientes de cdlculos complicados.

A inclusdo do teor de matéria organica no modelo fuzzy permite uma melhora na média de
erros absolutos total, comparado com o trabalho de Belleza (2014), o qual baseou seu modelo
apenas nos dados de textura e potencial matricial. Esta melhora, de aproximadamente 64%, é
baseada nos perfis considerados para validagao do modelo, e estd de acordo com as hipéteses

assumidas entre a relacdo de matéria organica e a reten¢do de umidade.

De acordo com o modelo e os dados de valida¢do, nada se pode concluir sobre a influéncia da
matéria organica em solos de textura argilosa (mais de 35% de argila), visto que apenas um
unico horizonte, de todos os dados, se encaixa neste perfil. Entretanto, solos argilosos tendem
a reter, por questoes jd discutidas, mais umidade, diminuindo a influéncia da matéria organica
nesta classe de textura. Ainda, € observado uma melhora das predi¢cdes da umidade com a
adicao da matéria organica em valores de potencial matricial alto. Isto se deve ao fato de a

matéria organica aumentar a superficie especifica do solo.

O erro absoluto médio total verificado para o modelo € bom, considerando que possam existir
imprecisdes nas medi¢des dos valores dos parametros do conjunto de dados adotado. Mesmo
que pouco mais da metade das estimativas esteja abaixo do limite de erro absoluto aceitavel de
2% (GARDNER, 1986), este modelo ¢ considerado adequado, levando em conta as incertezas
do fendmeno e o objetivo de se construir um método simples e rapido de prever dados de

umidade do solo.

O fato de o modelo superestimar a maioria dos valores de umidade €, em pratica, benéfico
considerando o problema de estudo de erosao do solo da regido em que os dados foram

adotados. Um dos objetivos dos estudos em Petrobras (2010) é elaborar uma estratégia de
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rotas para veiculos, logo, ao superestimar o valor de umidade que o solo considerado consegue

reter aumenta-se a margem de seguranca da escolha da rota a ser tomada.

Os resultados deste modelo levam em consideracdo dados de solo da regido amazonica e, por
isso, este sistema de inferéncia ndo deve ser transferido para dados de outras regides, mas sim
adaptado. Os parametros do sistema de inferéncia fuzzy sdo os conjuntos fuzzy representantes
das variaveis de entrada e saida, bem como o quadro de regras, que devem ser verificados em

cada regido que se queira reproduzir o método.

Com o intuito de aperfeigcoar os valores de estimativas para a umidade do solo, diminuindo
assim os erros de saida, aconselha-se analisar um conjunto maior de dados para a construcao
dos conjuntos fuzzy e da base de regras do sistema. Como os dados de coleta estao,
naturalmente, sujeitos a erros de medi¢ao, devido a imprecisdes tanto do fenomeno quanto da

medi¢do por parte humana, um nimero maior de dados permite uma margem de erro menor.

Como sugestio de continuidade deste estudo € indicada uma nova andlise de fuzzificacdo dos
parametros envolvidos. Isto pode ser feito com a utilizacdo de algoritmos genéticos, por
exemplo, para otimizar os conjuntos fuzzy. Ainda, a construc¢do da base de regras do sistema de
inferéncia pode ser feita com a utilizacdo do método de Wang-Mendel (WANG & MENDEL,

1992), que € um método de treinamento do sistema fuzzy, gerando regras automaticamente.

Por fim, é importante salientar que cada regido possui um conjunto de dados especifico para as
caracteristicas de solo e as relagdes existentes com a reten¢dao de umidade. A metodologia
apresentada neste trabalho pode ser reproduzida, e inclusive aperfeicoada, para a obten¢do de
resultados em outras regides, visto que a problemadtica do uso racional da dgua se torna um

fator mais importante a cada ano.



65

Referéncias

AFONSO, A. C. M.; NETTO, A. M.; VASCONCELOS, W. E. de. Fuzzy logic applied to
the modeling of water dynamics in an oxisol in northeastern Brazil. Revista Brasileira de
Ciéncia do Solo, v. 38, n. 2, p. 454-463, Vicosa, 2014.

AGENCIA BRASIL. Desperdicio de agua no Brasil chega a 40%. O GLOBO, Brasilia, 24
abr. 2007. Disponivel em: <http://oglobo.globo.com/sociedade/ciencia/desperdicio-de-agua-
no-brasil-chega-40-4193297>. Acesso em: 29 dez. 2014.

AGENCIA NACIONAL DE AGUAS. Conjuntura dos recursos hidricos no Brasil: informe
2013. Brasilia, ANA, 2013.

AMENDOLA, M.; SOUZA, A. L.; BARROS, L. C. Manual do uso da teoria dos conjuntos
fuzzy no Matlab 6.5. Campinas: CPG/FEAGRI/UNICAMP, 2005.

ASSOULINE, S.; TESSIER, D.; BRUAND, A. A conceptual model of the soil water reten-
tion curve. Water Resources Research, v. 34, n. 2, p. 223-231, 1998.

BARDOSSY, A.; DISSE, M. Fuzzy rule-based models for infiltration. Water Resources
Research, v. 29, n. 2, p. 373-382, 1993.

BARROS, L. C. de. Sobre sistemas dinamicos fuzzy - Teoria e Aplicacoes. 1997. Tese (Dou-
torado). Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computa-
cdo Cientifica, Campinas, 1997.

BARROS, L. C. de; BASSANEZI, R. C. Tépicos de logica fuzzy e biomatematica. 2. ed.
Sao Paulo: Unicamp/IMMEC, 2010.

BAYER, C.; MIELNICZUK, J. Dindmica e func¢do da matéria organica. In: SANTOS, G.A.;
CAMARGO, FA.O.; SILVA, L. S.; CANELLAS, L. P. (Ed.). Fundamentos da matéria or-
ganica do solo: ecossistemas tropicas e subtropicais. 2. ed. Porto Alegre: Metrépole, 2008.

BELLEZA, M. P. Modelagem fuzzy aplicada a estimativa da umidade do solo da Forma-
¢a0 Solimoes - AM. 2014. Dissertagdo (Mestrado em Modelagem Matemadtica e Computaci-
onal) - Universidade Federal Rural do Rio de Janeiro, Seropédica, 2014.

BIASSUSI, M. Simulacdo do movimento da agua no solo utilizando modelo numérico.
2001. Tese (Doutorado) - Faculdade de Agronomia, Universidade Federal do Rio Grande do
Sul, Porto Alegre, 2001.

BRAIDA, J. A. Matéria organica e residuos vegetais na superficie do solo e suas relacoes
com o comportamento mecanico do solo sob plantio direto. 2004. Tese (Doutorado em
Ciéncia do Solo) - Universidade Federal de Santa Maria, Santa Maria, 2004.



66

BRAIDA, J. A.; BAYER, C.; ALBUQUERQUE, J.; REICHERT, J. Matéria organica e seu
efeito na fisica do solo. Tépicos em ciéncia do solo, v. 7, p. 221-278, Vicosa, 2011.

CANCINO CALLE, J. A. Analise de ruptura de talude em solo nao saturado. 2000. Dis-
sertacdo (Mestrado em Geotecnia) - Escola de Engenharia de Sdo Carlos, Universidade de Sao
Paulo, Sao Carlos, 2000.

CEDDIA, M. B. Fisica do solo. Material de apoio da disciplina de Fisica do solo do curso de
pos-graduagdo em Ciéncia do Solo, Universidade Federal Rural do Rio de Janeiro, Seropédica,
2013.

CELIA, M. A.; BOULOUTAS, E. F.; ZARBA, R. L. A general mass-conservative numerical
solution for the unsaturated flow equation. Water Resources Research, v. 26, n.7, p. 1483-
1496, 1990.

CICHOTA, R.; VAN LIER, Q. de J. Analise da variabilidade espacial de pontos amostrais
da curva de retencao da agua no solo. Revista Brasileira de Ciéncia do Solo, v. 28, n. 4, p.
585-596, 2004.

COSTA, E. M.; SILVA, H. F; RIBEIRO, P. R. de A. Matéria organica do solo e o seu pa-
pel na manutencio e produtividade dos sistemas agricolas. Enciclopédia Biosfera, Centro
Cientifico Conhecer - Goiinia, v.9, n. 17, 2013.

DA SILVA, E. M.; LIMA, J. E. F. W; AZEVEDO, J. A; RODRIGUES, L. N. Valores de
tensao na determinacao da curva de retencao de agua de solos do Cerrado. Pesq. agropec.
bras., Brasilia, v. 41, n. 2, p. 323-330, 2006.

EMBRAPA. Centro Nacional de Pesquisa de Solos (Rio de Janeiro, RJ). Sistema Brasileiro
de Classificacao de Solos. 2. ed. Rio de Janeiro: Embrapa-SPI, 2006.

FAVORETTO, C. M. Caracterizacio da matéria organica humificada de um latossolo ver-
melho distroéfico através da espectroscopia de fluorescéncia induzida a laser. Dissertacao
(Mestrado em Quimica Aplicada) - Universidade Estadual de Ponta Grossa, Ponta Grossa,
2007.

GARDNER, W. H. Water content. In: KLUTE, A.Methods of soil analysis. Part 1. Physical
and mineralogical methods, 2. ed. Madison, Soil Science Society of America, Inc., 1986.

HALKIDIS, I. N.; TZIMOPOULOS, C.; EVANGELIDES, C.; SAKKELARIOY-
MAKRANTONAKI, M. Soil water management problem using fuzzy arithmetic. Global
NEST J, v. 11, n. 4, p. 556-565, 2009.

HILLEL, D. Environmental soil physics: Fundamentals, applications, and environmental
considerations. Academic press, 1998.

IBGE (Instituto Brasileiro de Geografia e Estatistica). Manual Técnico de Pedologia. Manu-
ais Técnicos em Geociéncias, n. 4, 2. ed., 2007.

KLUTE, A.; DIRKSEN, C. Hydraulic conductivity and diffusivity: Laboratory methods. In:
KLUTE, A. Methods of soil Analysis. 2. ed. Madison, American Society of Agronomy, Inc.,
1986.



67

KOSKO, B. Fuzziness vs. probability. International Journal of General System, v. 17, p.
211-240, 1990.

LEPSCH, 1. F. Formacao e conservacao dos solos. 2. ed. Oficina de textos, Sdo Paulo: 2010.
LIBARDI, P. L. Dinamica da Agua no Solo. Sao Paulo: Edusp, 2005.

LIBARDI, P. L. Agua no solo. Notas de aula ministrada em 2014. ESALQ/USP. Dispo-
nivel em: <http://www.leb.esalq.usp.br/aulas/lce200/Agua_no_Solo_2014.pdf>. Acesso em:
20/12/2014.

LIMA, E. M. C. de; SILVA, S. A. da; FILGUEIRA, H. J. A.; GOMES, H. P. Controle do
potencial matricial da 4gua no solo por meio de légica fuzzy. Irriga, v. 15, n. 4, p. 431-442,
2010.

MANICH, M.; GUETTER, A. K. Solucao analitica da equacao de Richards. Revista Brasi-
leira de Recursos Hidricos, v. 16, n.1, p. 47-54, 2011.

MCBRATNEY, A. B.; ODEH, 1. O. A. Application of fuzzy sets in soil science: fuzzy logic,
fuzzy measurements and fuzzy decisions. Geoderma, v. 77, n. 2, p. 85-113, 1997.

MEURER, E.J.; RHENHEIMER, D.; BISSANI, C.A. Fendmenos de superficie. In: Meurer,
E.J. (Ed.) Fundamentos de quimica do solo. Porto Alegre: Genesis, 2000.

MUALEM, Y. A new model for predicting the hydraulic conductivity of unsaturated po-
rous media. Water resources research, v. 12, n. 3, p. 513-522, 1976.

ORTEGA, N. R. S. Aplicacao da teoria de conjuntos fuzzy a problemas da biomedicina.
Tese (Doutorado) - Instituto de Fisica, Faculdade de Sao Paulo, Sao Paulo, 2001.

OTTONI, M. V. Avaliacao do ajuste da curva de retencao de agua dos solos a partir de
trés umidades representativas. Anais do XVIII Simpdsio Brasileiro de Recursos Hidricos,
Associacdo Brasileira de Recursos Hidricos, Campo Grande, p. 22-26, 2009.

PEDRYCZ, W. Why triangular membership functions?. Fuzzy sets and Systems, v. 64, n.
1, p. 21-30, 1994.

PETROBRAS SA. Relatério final do levantamento detalhado de solos da Base Petrolifera
Geodlogo Pedro de Moura (BOGPM), Coari - AM. Projeto Petrossolos Amazo6nicos (Convénio
PETROBRAS/UFRRIJ/FAPUR, N°45/08). Coordenador: Marcos Bacis Ceddia. 642p. 2010.

RAWLS, W. J.; NEMES, A.; PACHEPSKY, Y. Effect of soil organic carbon on soil hydrau-
lic properties. Developments on Soil Science, n. 30, cap. 6, 2004.

RAWLS, W. J.; PACHEPSKY, Y. A.; SOBECKI, T.; BLOODWORTH, H. Effect of soil or-
ganic carbon on soil water retention. Geoderma, v. 116, n. 1, p. 61-76, 2003.

REICHARDT, K.; TIMM, L. C. Solo, planta e atmosfera: conceitos, processos e aplicacoes.
Manole, 2004.

ROSSI, C.; NIMMO, J. R. Modeling of soil water retention from saturation to oven dry-
ness. Water Resources Research, v. 30, n. 3, p. 701-708, 1994.



68

SANTOS, R. D. dos; LEMOS, R. C.; SANTOS, H. G. dos; KER, J. C.; ANJOS, L. H. C. dos.
Manual de descricido e coleta de solo no campo. 5 ed. Sociedade Brasileira de Ciéncia de
Solo, Vicosa, 2005.

SOMMERFELDT, T. G.; CHANG. C. Soil-water properties as affected by twelve annual
applications of cattle feedlot manure. Soil Sci. Soc. Am. J., 49:7-9. 1986.

SOUZA, A. L. Teoria de conjuntos fuzzy no estudo da dinimica da agua e de solutos no
solo. 2007. 157 £. 2007. Tese (Doutorado) - Faculdade de Engenharia Agricola, Universidade
Estadual de Campinas, Campinas, 2007.

TAVARES, M. H. E.; FELICIANO, J. J. S.; VAZ, C.M.P. Analise comparativa de métodos
para determinacao da curva de retencao de agua em solos. In: XXXI Congresso Brasileiro
de Ciéncia do Solo, Gramado, 2007.

TZIMOPOULOS, C; TSAOUSIS, A; EVANGELIDES, C; SAKELLARIOU, M. Fuzzy analy-
sis of infiltration problem. In: Agricultural and biosystems engineering for a sustainable
world. International Conference on Agricultural Engineering, Hersonissos, Grécia, 2008. Eu-
ropean Society of Agricultural Engineers, 2008.

VAN GENUCHTEN, M. Th. A closed-form equation for predicting the hydraulic conduc-
tivity of unsaturated soils. Soil Science Society of America Journal, v. 44, n. 5, p. 892-898,
1980.

WANG, L. X.; MENDEL, J. M. Generating fuzzy rules by learning from examples. IEEE
Transactions on Systems, Man and Cybernetics, v. 22, n. 6, p. 1414-1427, 1992.

ZADEH, L. A. Fuzzy sets. Information and control, v. 8, n. 3, p. 338-353, 1965.



ANEXO A - Dados de solos analisados

Tabela A.1:

(2010).

Dados de horizontes analisados de Petrobras

Perfil

Horizonte Textura (% argila) Mat. Organica (g/kg)

031
031
035
035
037
037
039
045
049
049
051
051
054
054
055
055
057B
057B
058
058
060
060
061
061
065
065
068
068
068
069
069

A
AB
A
AB
A
AB

> > >

AB
AC
AB
AB
AB
AB
AB
AB
AB
Al
A2

AE

AB

13%
16%
18%
26%
15%
22%
13%
6%
17%
17%
13%
12%
18%
22%
32%
36%
2%
5%
6%
16%
22%
24%
27%
30%
32%
37%
7%
3%
2%
15%
15%

21,5
7.8
14,4
10,2
10,9
7.8
17,3
8,1
18,7
78
16
12
13,6
7,7
13,4
10,6
11
6,5
20,4
10,5
21,1
11,2
21,1
11,2
60,30
11,20
11,40
6,60
4,90
14,20
6,80

continua na proxima pdgina
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Tabela A.1 - - continuacdo da pdgina anterior

Perfil Horizonte Textura (% argila) Mat. Organica (g/kg)

070 A 27% 20,20
070 AB 31% 10,00
074 A 5% 16,20
074 AB 19% 8,30
075 A 18% 11,50
075 AB 25% 7,50
078 A 19% 14,20
078 AB 24% 9,10
079 A 6% 29,60
079 AB 20% 10,10
080 A 22% 8,40
086 A 15% 9,60
086 AB 24% 7,40
088 A 3% 18,00
088 AC 9% 6,50
090 A 14% 6,00
090 AB 15% 3,00
094 A 14% 15,60
094 AB 23% 8,00
095 A 29% 25,00
095 AB 29% 15,00
096 A 21% 19,60
096 AB 25% 14,40
099 A 12% 19,20
099 AB 12% 9,00
101 A 11% 14,40
101 AB 12% 10,70
103 A 10% 8,20
103 AB 13% 7,90
105 A 15% 10,00
105 AB 16% 9,30
106 A 15% 22,80
106 AB 18% 9,60
108 A 16% 10,20
108 AB 19% 8,40
110 A 9% 15,10
110 AB 10% 10,20
123 A 12% 11,22
123 AB 13% 10,32
136 A 25% 22,20
136 AB 25% 16,56
139 A 16% 8,20
139 AB 21% 7,20
143 A 14% 15,00
143 AB 14% 7,70

continua na proxima pdgina
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Tabela A.1 - - continuacdo da pdgina anterior

Perfil Horizonte Textura (% argila) Mat. Orgénica (g/kg)

150 A 16% 18,40
150 AB 19% 9,80
158 A 5% 13,80

158 AB 25% 10,80
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