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Resumo

TRIANI, Tárcio de Sampaio. Sistema de inferência fuzzy para estimativa da
umidade do solo sob influência do teor de matéria orgânica. 2015. 70p.

Dissertação (Mestrado em Modelagem Matemática e Computacional).
Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro,

Seropédica, RJ, 2015.

O estudo da dinâmica da água no solo tem sido crescente frente à necessidade
de otimização de uso de recursos hídricos para a manutenção da produtividade
agrícola. Como forma de auxiliar esse estudo, diferentes modelos de dinâmica

da água no solo têm sido criados e estudados, em uma tentativa de se prever
situações que empiricamente se tornam demoradas e custosas. A dinâmica da
água no solo está associada diretamente a parâmetros físico-hídricos do solo,
assim como a umidade do solo. Para se determinar a umidade do solo existem
técnicas que necessitam de uma grande quantidade de amostragens, elevando o

custo e o tempo necessário para realizar tais medições. Este trabalho dá
continuidade à dissertação de Belleza. É elaborado um modelo baseado em

regras fuzzy para estimar a umidade em camadas superficiais do solo a partir de
dados de textura do solo, potencial matricial e quantidade de matéria orgânica.
A distinção e análise feitos pelo modelo recaem sobre a influência da matéria
orgânica sobre a retenção de umidade pelo solo, desconsiderada pela maioria

dos trabalhos deste tipo. O conjunto de dados utilizado para treinamento e
validação do modelo é proveniente de um projeto de pesquisa realizado na
região amazônica, organizado em relatório financiado pela Petrobras. Os
resultados, obtidos através de simulação realizada no software Matlab,

demonstram que a matéria orgânica possui grande influência na retenção de
umidade por solos cujo teor de argila esteja abaixo de 35%. É observada uma
redução significativa do erro absoluto médio total em relação ao trabalho de
Belleza, que desconsidera a influência da matéria orgânica. O aumento do

número de regras do sistema de inferência fuzzy permite também uma melhor
aproximação das estimativas do valor real de umidade. Levando em conta as

incertezas inerentes ao fenômeno este modelo é considerado adequado devido
a sua simplicidade e média de erros relativamente baixa, e uma evolução no

campo da modelagem da estimativa de umidade do solo por lógica fuzzy.



Abstract

TRIANI, Tárcio de Sampaio. Fuzzy inference system for estimating the soil
moisture under the influence of organic matter content. 2015. 70p.

Dissertation (Mastert’s degree in Computacional and Mathematical Modeling).
Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro,

Seropédica, RJ, 2015.

The study of soil water dynamics has been growing across the need to optimize
the use of water resources for the maintenance of agricultural productivity. In

order to assist this study, different models of soil water dynamics has been
created and studied in an attempt to predict situations that empirically become
time-consuming and expensive. The soil water dynamics is directly associated
with physical and hydric parameters, as well as the soil moisture. To determine
the soil moisture, there are techniques that require a large amount of samples,

increasing the cost and time required to perform such measurements.This work
continues the dissertation of Belleza. A model based on fuzzy rules to estimate
the moisture in topsoil from soil texture data, matric potential and amount of
organic matter is elaborated. The distinction and analysis made by the model

fall under the influence of organic matter on the soil water retention,
disregarded by most studies of this type. The data set used for training and

validation of the model comes from a research project conducted in the
Amazon region, organized in a report funded by Petrobras. The results,
obtained by simulation performed in the software Matlab, show that the

organic matter has great influence in soil water retention of soils which clay
content is under 35%. A significant decrease of total mean error in relation
with the work of Belleza, which ignores the influence of organic matter, is

observed. The increase in the number of the fuzzy inference system rules also
allow a better approximation of the estimated values to the real moisture

values. Taking into account the uncertainties inherent to the phenomenon this
model is considered appropriate, due to its simplicity and relatively low

average of errors, and an evolution in the field of modeling the soil moisture
estimation by fuzzy logic.
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1 Introdução

De toda água presente na superfície terrestre, cerca de 2,5% é de água doce e apenas 0,3%

destes se encontram em rios e lagos, representando a parte disponível para consumo

(REICHARDT e TIMM, 2004). Na América do Sul, o país que mais detém mananciais de

água doce é o Brasil, com 53%. De acordo com a atual Conjuntura de Recursos Hídricos do

Brasil (CRH), de 2013, realizada pela Agência Nacional de Águas (ANA), cerca de 80% da

água doce do Brasil se encontra na bacia Amazônica, atendendo a pouco mais de 5% da

população brasileira.

Com a possibilidade real de uma crise hídrica nacional, é iminente uma preocupação com o

uso e disponibilidade da água. A frequente falta de chuvas e diminuição drástica dos níveis dos

reservatórios de água na região sudeste estão gerando discussões sobre o desperdício de água

no Brasil. Dados da ANA de 2007 já indicavam que 40% da água retirada no Brasil era

desperdiçada, sendo metade desse desperdício devido à irrigação (AGÊNCIA BRASIL, 2007).

Uma análise mais recente (AGÊNCIA NACIONAL DE ÁGUAS, 2013) aponta que de 2006 a

2010 houve um aumento de aproximadamente 29% da retirada total de água dos manaciais

brasileiros. Esse aumento é devido, principalmente, à atividade de irrigação, cuja vazão de

retirada aumentou de 46%, em 2006, para 54%, em 2010. Da vazão total efetivamente

consumida, 72% é devida a irrigação e o restante para fins de abastecimento urbano, industrial,

animal e população rural.

O estudo da dinâmica da água no solo tem sido crescente frente à necessidade de otimização

de uso de recursos hídricos para a manutenção da produtividade agrícola. É preciso haver um

controle, pois a falta de água leva a morte das plantas, enquanto que o seu excesso ocasiona

saturação do solo, falta de oxigenação das plantas e drenagem de nutrientes do solo, além do

desperdício de água.

A água do solo ocupa os espaços não ocupados pelas partículas sólidas do solo. Este espaço é

denominado espaço poroso do solo. Quando este espaço poroso não está totalmente cheio de

água ele também é ocupado por ar, e o solo é dito estar não saturado. Caso contrário, o solo é

dito estar saturado (LIBARDI, 2014). Como qualquer corpo na natureza, a água é
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caracterizada por um estado de energia potencial e diferenças nos valores destes potenciais

fazem com que a água se movimente pelo solo. O estudo desse movimento da água, bem como

dos processos que influenciam esse movimento, é também denominado de estudo da dinâmica

da água no solo.

A dinâmica da água no solo está associada diretamente a parâmetros físico-hídricos do solo

(SOUZA, 2007), cujas estimativas, como será visto no capítulo seguinte, são difíceis de serem

realizadas. Outro fator importante que está diretamente ligado à dinâmica de água no solo é a

umidade, ou seja, a quantidade de água existente em uma unidade de massa ou volume de solo.

Para se determinar a umidade do solo existem técnicas que necessitam de uma grande

quantidade de amostragens do solo (BIASSUSI, 2001). Portanto, o custo e o tempo necessário

para realizar tais medições são elevados.

Uma importante ferramenta utilizada na determinação da umidade em solos não saturados é a

curva de retenção de umidade do solo, fundamental na caracterização das propriedades

hidráulicas do solo (CICHOTA & VAN LIER, 2004). Esta curva associa o teor de água no solo

à energia potencial com que ela está retida, ou seja, indica a capacidade do solo em armazenar

água. Para da Silva et al. (2006) a determinação da curva de retenção de água no solo é

essencial no estudo das relações solo-água. Mais ainda, Ottoni (2009) avalia a importância

desta curva como uma forma de subsídio para a modelagem hidrológica e um meio de poder

identificar de forma quantitativa a capacidade de armazenamento de água pelo solo.

Para a obtenção da curva de retenção de água no solo, tradicionalmente, utiliza-se o método

empírico denominado Câmara de Pressão de Richards. Algumas dificuldades deste método são

o tempo de determinação do ponto de equilíbrio entre a pressão aplicada e a água retida no

solo, o longo tempo exigido para as medidas e o alto custo do equipamento (TAVARES,

FELICIANO e VAZ, 2007).

Como auxílio às análises da dinâmica da água no solo e à previsão da capacidade de

armazenamento de água pelo solo surgiram alguns modelos matemáticos, considerados

determinísticos, em função do tipo de parâmetros de entrada e das informações de saída.

Dentre eles estão as clássicas equação de Richards e a equação de van Genuchten (descritas na

seção 2.4). A primeira modela o fluxo de água no solo e a segunda estima a umidade do solo.

Entretanto, para Souza (2007), o maior desafio para utilizar modelos numéricos

determinísticos para fenômenos deste tipo está no fato de que o sucesso desses modelos

depende da precisão com que os parâmetros são determinados.

Conforme Halkidis (2009) afirma, os parâmetros envolvidos em fenômenos naturais não

podem ser medidos de forma precisa, afetando, por isso, o desempenho dos modelos
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numéricos. A criação de modelos probabilísticos (estocásticos ou estatísticos) e modelos

baseados em lógica fuzzy, elaborada pelo matemático Zadeh (1965), foram algumas das

alternativas encontradas para contornar este problema. Estes dois tipos de modelo possuem

conceitos parecidos (descrevem a incerteza com números entre 0 e 1) mas, em seu significado,

são diferentes.

Para a teoria probabilística, o evento considerado está muito bem definido e a única dúvida é

sobre a sua ocorrência (ORTEGA, 2001). Com a ocorrência do evento, a dúvida já não existe.

Como exemplo, ao lançar um dado é fácil verificar a probabilidade de sair determinado

número. Entretanto, ao se verificar o número após o lançamento do dado, não há mais

incerteza sobre o evento considerado no momento. Agora imagine uma urna que possua várias

bolas com diferentes tons de rosa, variando do branco ao vermelho. É difícil verificar a chance

de sortear uma bola rosa, uma vez que haverá dificuldade em decidir se a bola é rosa ou não.

Para estes casos de incerteza, a teoria fuzzy é a mais indicada, pois ela lida com graus de

pertinência de um objeto a um conjunto, tal qual decidir se a bola sorteada no exemplo possui

um tom 60% rosado.

Neste sentido, a teoria fuzzy determina o grau em que um evento ocorre e não se ele ocorre,

enquanto que a aleatoriedade determina a incerteza da ocorrência do evento, se ele ocorre ou

não (KOSKO, 1990).

Uma outra questão que diferencia estas duas teorias é a subjetividade. A teoria probabilística

não a considera. Como exemplo, tome um conjunto de pessoas de diferentes alturas e verifique

a probabilidade de se sortear uma pessoa alta. Para a teoria probabilística, este evento precisa

ser melhor definido, pois em relação a uma pessoa com 2,00 m uma pessoa que tenha 1,80 m

pode ser considerada baixa.

Em física do solo, a maioria dos eventos, tal como verificar a umidade do solo, são incertos

mesmo após a verificação do resultado. Isto porque existe a possibilidade de erros de medição

por parte humana ou até mesmo as imprecisões dos fatos considerados na hora de obter as

estimativas. Por este motivo, a teoria fuzzy é considerada neste trabalho, assim como foi em

outros trabalhos pesquisados relacionados a seguir.

Souza (2007) utiliza a lógica fuzzy na modelagem da dinâmica da água e transporte de solutos

(Potássio) em uma coluna de solo não saturado. O conjunto de dados utilizado para análise e

formação do modelo foi obtido a partir de simulação numérica da equação de Richards pelo

software HYDRUS-2d R©. A validação deste modelo foi feita com dados experimentais obtidos

em laboratório. Os resultados mostraram que o modelo é pouco eficiente em comparação aos

dados experimentais, com erros relativos muito altos. Porém, em comparação aos dados
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obtidos pelo software HYDRUS-2d R©, o modelo se mostrou uma ferramenta eficaz na

descrição dos processos.

Afonso, Netto e Vasconcelos (2014) recorrem a lógica fuzzy para a construção de um modelo

alternativo para descrever o fluxo de água em um solo não saturado. As variáveis consideradas

no modelo são as umidades verificadas nas camadas de solo adjacentes à camada em que se

está verificando o fluxo de água. Os dados utilizados como base para o modelo foram

coletados experimentalmente, na região nordeste do Brasil. A capacidade do modelo em

reproduzir os resultados experimentais foi considerada satisfastória, com erro quadrático

médio de 0,0092 e erros relativos abaixo de 1,5%.

Bardossy e Disse (1993) apresentam dois modelos baseados em lógica fuzzy para o processo

de infiltração de água no solo. Os dados para construção dos modelos foram gerados a partir

de simulações com a equação de Green e Ampt, que descreve a infiltração ao longo do tempo,

e a equação de Richards, para fluxo vertical de água. Em seus resultados, as estimativas

obtiveram erros baixos, e os autores citam a lógica fuzzy como uma alternativa vantajosa, visto

que possuem menos parâmetros que as equações clássicas. Tzimopoulos et al. (2008)

modelam, também, a infiltração de água no solo, porém, a partir do modelo de Parlange,

obtendo resultados muito próximos dos valores coletados.

Lima et al. (2010) fazem uso de um sistema de controle baseado em regras de lógica fuzzy para

definir o momento certo de irrigação. Para isto, o controlador leva em conta dados de variáveis

ligadas a umidade do solo, fluidez da água no solo e pressão utilizada nos mecanismos de

irrigação. Como resultado obteve-se um sistema que permite uma melhor produtividade

agrícola, economia com gastos operacionais, já que o sistema é automático, e fácil adaptação a

novas necessidades práticas, visto que o mesmo é baseado em regras linguísticas.

Belleza (2014) propõe um sistema de inferência fuzzy para estimar a umidade do solo a partir

de dados de potencial matricial e textura do solo. Os dados utilizados para construção e

validação do controlador foram obtidos de um relatório de dados coletados na região

amazônica. O erro absoluto médio verificado para o conjunto de 11 dados de validação foi de

2,1%.

O presente trabalho propõe um modelo de base de regras fuzzy para estimar a umidade em

camadas superficiais do solo. As variáveis consideradas para o modelo foram textura do solo,

potencial matricial e quantidade de matéria orgânica. Esta última variável não foi considerada

por Belleza (2014), cujo trabalho auxiliou a elaboração deste modelo.

A matéria orgânica do solo se constitui de compostos orgânicos de origem vegetal ou animal e
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se deposita nas camadas superficiais do solo. Apesar de não ser normalmente considerada em

modelos de dinâmica da água no solo, ela possui importante influência na retenção de umidade

pelo solo, pois age de formas direta e indireta sobre as características físicas e fenômenos

físicos e químicos do solo ligados a retenção de água (BRAIDA et al., 2011).

Com a introdução da matéria orgânica nas análises de retenção de água no solo, pretende-se

melhorar os resultados do modelo, realizando uma nova análise dos dados para a formação das

regras do sistema de inferência fuzzy e definição dos intervalos das variáveis de entrada e saída.

Os dados utilizados para formação e validação do modelo foram obtidos junto ao projeto

intitulado “Erosão Hídrica em Solos Amazônicos”. Tal projeto é resultado de convênio entre a

Petrobras SA, a UFRRJ e a FAPUR (Fundação de Apoio à Pesquisa Científica e Tecnológica

da UFRRJ) e está publicado em Petrobras (2010). As pesquisas do projeto citado foram

situadas no município de Coari, em Manaus, AM. Para simulação dos resultados foi utilizado o

toolbox para fuzzy disponibilizado em MATLAB R©, em cooperação do prof. Dr. João Frederico

Costa de Azevedo Meyer, do Departamento de Matemática Aplicada da Unicamp, SP.

No capítulo 2, a física do solo, a dinâmica da água no solo e a influência que a matéria

orgânica tem na retenção de umidade pelo solo são discutidos mais profundamente. Ainda, são

relacionados os modelos matemáticos determinísticos clássicos que estimam a dinâmica da

água no solo e a retenção de umidade.

No capítulo 3 são apresentados os conceitos que envolvem a lógica fuzzy, base para o modelo

construído nesse trabalho.

O capítulo 4 apresenta a metodologia para construção do sistema de inferência fuzzy para

estimar a umidade volumétrica do solo, com descrição dos dados observados para treinamento

do modelo.

No capítulo 5 os resultados do modelo proposto são apresentados, com simulação numérica

através do software Matlab R©, e é feita uma comparação com os resultados apresentados por

Belleza (2014).

No capítulo 6 é feita a conclusão da evolução do modelo e dos resultados obtidos.
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2 Dinâmica da água no solo

2.1 O solo

Definido por Santos et al. (2005) como “uma coleção de corpos naturais independentes

constituídos de materiais minerais e orgânicos organizados em camadas resultantes da ação de

fatores de formação”, o solo possui importância essencial para a produção vegetal.

Funcionando como um reservatório de água para as plantas, elemento primordial para o seu

desenvolvimento, o solo retém água e fornece-a conforme as necessidades dos vegetais.

A formação de um solo é originada por processos químicos, físicos e biológicos de

decomposição, desintegração e recombinação da rocha matriz, sendo cinco os fatores

responsáveis por essa formação: o material original, o tempo, o clima, o relevo e os

organismos vivos (LEPSCH, 2010).

O material original compreende o material geológico do qual o solo se origina. Por este

motivo, as características e propriedades de um solo dependem da composição do material

original do solo. O tempo refere-se à idade do solo, fator necessário para a ocorrência das

ações físicas e reações químicas que o transformam. A principal consequência do tempo na

formação dos solos é a sua espessura. O clima refere-se, principalmente, às ações da umidade

(precipitações pluviométricas) e temperatura e, por isso, os solos apresentam características e

propriedades diferentes para cada clima. Quanto ao relevo, podemos considerar a topografia

do local (diferenças de altitude, formato, declividade e posição do terreno), que interfere na

distribuição desigual da água da chuva, da luz, do calor do sol e da erosão no terreno. Por

último, os organismos presentes no solo promovem a diferenciação de alguns solos através da

decomposição dos restos de vegetais e animais (LEPSCH, 2010).

Os diferentes fatores e processos de formação do solo atribuem-no características e

propriedades químicas e físicas próprias, diferenciando diversos tipos de solo e influenciando

no fornecimento de água e minerais para o desenvolvimento das plantas (LEPSCH, 2010).

Dentre as características físicas do solo podem ser citadas:
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Cor É o produto da mistura das cores das partículas do solo. É considerada como uma das

características morfológicas mais importantes, pois além de ser facilmente visível, per-

mite uma boa caracterização do solo (CEDDIA, 2013). Alguns solos recebem, inclusive,

nomenclatura de acordo com a sua cor, como a “terra roxa” e a “terra preta”.

Textura A textura de um solo refere-se à proporção relativa das partículas sólidas que com-

põem a massa do solo. Os principais constituintes minerais dessas partículas são a areia,

o silte e a argila. A combinação desses constituintes exerce influência direta sobre as-

pectos de retenção de umidade pelo solo. Mais adiante a textura do solo e sua influência

na retenção de umidade são explicadas de forma aprofundada, visto que é parte essencial

deste trabalho.

Estrutura Representa o padrão de arranjamento das partículas primárias do solo (areia, silte

e argila) em unidades estruturais compostas chamadas de agregados (SANTOS et al.,

2005). Os agregados são considerados partículas secundárias, formadas a partir da agre-

gação das partículas primárias.

Consistência É o termo usado para designar as manifestações das forças físicas de coesão

(entre partículas do solo) e de adesão (entre as partículas do solo e de outros materiais)

agindo dentro do solo em diferentes graus de umidade (CEDDIA, 2013). As partículas do

solo, no interior dos agregados, aderem umas às outras e são mantidas dessa forma com

maior ou menor grau de adesão. Essa união confere aos agregados um aspecto duro ou

macio. A resistência do material do solo, em seu estado natural, a alguma força que tende

a rompê-los é conhecida como consistência do solo (LEPSCH, 2010), e é determinada

em três estados de umidade: solo seco, úmido e saturado.

Já entre algumas das características químicas do solo podem ser citadas:

pH Indica a acidez de um solo. Quanto mais abaixo de 7 for o pH, mais ácido será o solo.

E quanto mais acima de 7, ele será alcalino. O pH de um solo pode variar de acordo

com a sua composição, concentração de metais, sais minerais, ácidos, bases e material

orgânico. O valor ideal do pH de um solo destinado a agricultura depende da cultura que

será utilizada, pois cada cultura possui valores de pH diferentes de adaptação.

Quantidade de hidrogênio Assim como o pH, determina a acidez do solo. Quanto maior o

teor de Hidrogênio, menor o pH, e logo, maior será a acidez.

Capacidade de troca catiônica (CTC) Cátions são íons que possuem déficit de elétrons e, por

isso, possuem carga predominantemente positiva. No solo, eles são formadores de cargas
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positivas que podem ser trocados por outros cátions. A CTC representa o número total

de cátions que o solo pode reter. Portanto, depende da quantidade de cargas negativas

presentes. Quanto maior for a quantidade de cargas negativas no solo, maior será sua

CTC. A importância da CTC para o solo está ligada a retenção de água e estruturação e

consistência do solo.

Matéria Orgânica Indica a fração do solo composta de material de origem vegetal ou animal,

em diferentes estágios de decomposição. Mais adiante, ao longo deste capítulo, será

aprofundado o conceito de matéria orgânica e explicitada a sua influência na retenção de

umidade do solo.

O solo é considerado como um sistema trifásico, pois se constitui das frações sólida (material

mineral e orgânico), líquida (solução de sais minerais e componentes orgânicos) e gasosa (ar

do solo, que ocupa o espaço entre as partículas sólidas não ocupado pela fração líquida).

Costuma-se denominar de matriz do solo os constituintes da fração sólida do solo. O espaço

não ocupado pelas partículas sólidas do solo é denominado de espaço poroso.

Parte da fração sólida de um solo é constituída de compostos orgânicos de origem animal ou

vegetal, nos mais diversos estágios de transformação (decomposição). A esta composição do

solo dá-se o nome de matéria orgânica do solo. O estágio mais avançado de transformação da

matéria orgânica é denominado húmus, formado pela ação de microorganismos nativos do

solo. As características principais do húmus são: estado coloidal (de tamanho menor que 1

micrômetro), cor escura e alta estabilidade no solo (REICHARDT e TIMM, 2004).

Com a transformação do material original (rocha matriz) em solo, uma série de camadas

superpostas se torna visível a partir de um corte vertical no solo. Essas camadas são

denominadas horizontes do solo, e juntas elas formam o que chamamos de perfil do solo.

Segundo Lepsch (2010),

“...para identificar e delimitar os horizontes, na face exposta do perfil do solo,
em uma trincheira ou talude de estrada, primeiramente são observadas as dife-
renças maiores de cor, textura, estrutura, ou consistência, e outras característi-
cas”.

Um solo completo é formado por 4 horizontes principais - A, B, C e R - que podem ainda ser

subdivididos em novos horizontes a partir de suas características físicas e químicas, e ainda um

horizonte superficial O. A figura 2.1 ilustra os horizontes principais de um solo.

O horizonte O constitui-se de acúmulo de matéria orgânica total ou parcialmente decomposta.

Ocorre, geralmente, em solos de mata ou em solos orgânicos (LEPSCH, 2010).
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Figura 2.1: Esquema de perfil de um solo 2. O horizonte R situa-se na camada inferior ao
horizonte C.

O horizonte A, camada mais superficial do solo, é também denominado horizonte de

eluviação, pois a ação das chuvas faz com que esta camada perca coloides minerais (Ferro,

Alumínio e argila) para o horizonte B (IBGE, 2007). Outra característica é a cor escura devido

ao acúmulo de matéria orgânica. As subdivisões deste solo que cabem citar aqui são: horizonte

AB, superficial, com predomínio de características de horizonte A e algumas características de

horizonte B; horizonte AC, que possui, predominantemente, características de A e algumas

características do horizonte C. Este último ocorre na ausência de horizonte B.

O horizonte B é também denominado de horizonte de iluviação, já que recebe os coloides

minerais provenientes do horizonte A, e apresenta máximo desenvolvimento de cor e estrutura.

É considerado um horizonte subsuperficial. Dentre as suas subdivisões podem ser citados os

horizontes BA, que possui, predominantemente, as características do horizonte B, mas também

possui características do horizonte A, e o horizonte BC, que possui, predominantemente,

características do horizonte B, e também características do horizonte C.

O horizonte C é a camada do solo com mais características da rocha matriz e o horizonte R é a

rocha matriz propriamente dita, situada na camada mais profunda do solo.

As partículas sólidas do solo podem variar enormemente de tamanho e qualidade

(REICHARDT e TIMM, 2004), podendo ser vistas a olho nu ou somente com o auxílio de um

microscópio. Existem diferentes escalas para classificação das partículas do solo segundo o

seu diâmetro. A tabela 2.1 indica as classificações para a escala Atterberg e para a escala

2Fonte: http://upload.wikimedia.org/wikipedia/commons/c/cc/Soil_profile.jpg. Acesso em 05 jan. 2015.
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americana, também adotada pela Sociedade Brasileira de Ciência do Solo (SBCS)

(REICHARDT e TIMM, 2004).

Tabela 2.1: Escalas de classificação granulométrica do solo

Escala de Atterberg Escala americana
Fração Diâmetro médio Diâmetro médio

Calhaus 20 a 200 mm > 75 mm
Cascalho 2 a 20 mm 2 a 75 mm

Areia 0,02 a 2 mm 0,05 a 2 mm
Silte 0,002 a 0,02 mm 0,002 a 0,05 mm

Argila <0,002 mm < 0,002 mm

Tradicionalmente, as únicas frações consideradas para a definição da textura de um solo são as

frações de areia, silte e argila (REICHARDT e TIMM, 2004). A identificação da classe

textural de um solo pode ser feita graficamente através do triângulo textural, indicado na figura

2.2. Por exemplo, um solo que possui 60% de areia, 10% de silte e 30% de argila se classifica,

segundo o triângulo textural da figura 2.2 como de textura franco-argilo arenosa. Essa leitura é

feita da seguinte forma: para a porcentagem indicada de areia, 60%, saem duas linhas das

quais deve ser considerada a da esquerda. Em seguida considera-se o valor da porcentagem de

silte, 10%, e a linha diagonal que sai desse valor, marcando o ponto de encontro desta com a

linha anterior, considerada na porcentagem de areia. A linha que sai desse ponto, à esquerda,

deve indicar a porcentagem de argila verificada. A região deste ponto indica a classificação

textural do solo considerado.

Embrapa (2006) cita a existência de grupamentos texturais, que são a reunião de uma ou mais

classes de textura. Neste caso, cabe citar os cinco grupamentos texturais: arenosa, média,

argilosa, muito argilosa e siltosa. Neste trabalho, os grupamentos texturais foram considerados

conforme o percentual de argila, assim como em Belleza (2014), em adaptação possível aos

critérios verificados na primeira referência citada. Assim, os grupamentos texturais

considerados foram:

• Textura arenosa: teor de argila menor que 15%

• Textura média: teor de argila entre 15% e 35%

• Textura argilosa: teor de argila entre 35% e 60%

• Textura muito argilosa: teor de argila maior que 60%
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Figura 2.2: Triângulo de classificação textural (adaptado de Santos et al. (2005)).

A formação desses grupamentos texturais significa uma simplificação do triângulo textural

considerado anteriormente e está indicada graficamente na figura 2.3.

Figura 2.3: Triângulo de classificação textural simplificada proposto em EMBRAPA (2006).
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2.2 Movimento da água no solo

Como qualquer corpo na natureza, a água pode ser caracterizada por um estado de energia.

Diferentes formas de energia podem determinar esse estado (REICHARDT e TIMM, 2004). O

ramo da físca que estuda as relações energéticas (movimento de energia) num processo físico

que envolve um sistema (objeto que está sendo estudado) e um meio (tudo o que circunda o

sistema e que com ele pode interagir) é a termodinâmica. No caso da dinâmica da água no

solo, o sistema é a água, incluindo íons, moléculas e gases dissolvidos, e o meio é a matriz do

solo e os gases do ar do solo.

As relações energéticas podem ser mecânicas (cinética e potencial) ou térmicas, sendo a

primeira em virtude da ação de forças que dão origem ao trabalhos mecânicos e a segunda por

diferenças de temperatura (REICHARDT e TIMM, 2004). A energia cinética de um corpo

deve-se à sua velocidade instantânea em relação a um campo de forças (LIBARDI, 2005).

Como a água se move a velocidades baixas pelo solo, sua energia cinética, que é proporcional

ao quadrado de sua velocidade, pode ser considerada desprezível (HILLEL, 1998). Já a

energia potencial da água, função de sua posição e condições internas, é de grande importância

para a determinação do seu estado energético no solo.

A função termodinâmica Energia Livre de Gibbs descreve o estado de energia da água, que no

sistema solo-planta-atmosfera recebe o nome particular de Potencial Total da Água. A energia

livre de Gibbs é expressa em unidade de energia. Como a energia de um sistema é uma

grandeza extensiva, ou seja, proporcional à escala do sistema, é comum expressá-la por uma

unidade de outra grandeza proporcional à extensão do sistema. Das formas mais utilizadas, a

principal é a energia por unidade de volume, que possui dimensões de pressão. Esta grandeza,

apesar de ser “energia”, possui a propriedade de ser intensiva, ou seja, é invariante à escala do

sistema e por isso a energia da água é chamada de potencial, sendo medido em unidade de

pressão (REICHARDT e TIMM, 2004).

A diferença de potencial da água em pontos do solo gera o seu movimento pelo espaço poroso

do solo. Assim como qualquer corpo na natureza, a água tende a se mover de pontos em que

sua energia potencial total é maior para pontos em que é menor, conforme afirmam Reichardt e

Timm (2004):

“A tendência espontânea e universal de toda matéria na natureza é assumir um
estado de energia mínima, procurando equilíbrio com o meio ambiente. A
água obedece a essa tendência universal e move-se constantemente no sentido
de diminuição de seu potencial total”.

O potencial total da água (Ψ), indicado na equação 2.1, é determinado pela soma de cinco
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componentes: os potenciais térmico (ΨT ), gravitacional (Ψg), de pressão (ΨP ), osmótico (Ψos)

e matricial (Ψm).

Ψ = ΨT + Ψg + ΨP + Ψos + Ψm (2.1)

O potencial térmico está associado a diferenças de temperatura e pode ser desprezado, visto

que os processos que ocorrem no solo são aproximadamente isotérmicos (REICHARDT e

TIMM, 2004).

O potencial gravitacional ocorre devido ao campo gravitacional terrestre e está sempre

presente. É determinado pela elevação relativa a um nível arbitrário de referência. Pode ser

medido em energia por unidades de volume, massa ou peso.

O potencial de pressão atua sempre que houver pressão ocasionada por uma carga de volume

de água, logo uma pressão positiva. Esse potencial só é importante para solos saturados que,

por conseguinte, possuem uma coluna de água exercendo pressão sobre o ponto a ser

considerado.

O potencial osmótico está associado a presença de sais e outros solutos na água. Considerando

somente a relação água-solo, não há presença de membranas semipermeáveis, que são

membranas que permitem a passagem de moléculas de solventes em uma solução, mas não de

soluto. Também, a pouca variação da concentração da solução do solo contribui para que o

potencial osmótico não seja considerado em tal relação.

O potencial matricial refere-se às interações entre a matriz do solo e a solução retida nele,

sendo representado pelas forças de adsorção e capilaridade, que são as principais forças

responsáveis pela retenção de água no solo (LIBARDI, 2005).

Pelo fenômeno da adsorção a retenção de água ocorre nas superfícies das partículas sólidas do

solo por adesão das moléculas da água ou soluto, formando um filme contínuo de água.

Portanto, quanto maior for a área superficial específica, ou seja, a área por unidade de massa,

da partícula sólida, maior será a força de adsorção. Dentre as partículas sólidas do solo

considerada para avaliação da textura (areia, silte e argila) a que possui maior área específica é

a argila (REICHARDT e TIMM, 2004).

Segundo Libardi (2005) são três os mecanismos propostos para explicar o processo de

adsorção:

• A superfície dos minerais de argila é coberta com átomos de hidrogênio e grupos de
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oxidrilas negativamente carregados, formando um campo elétrico ao redor das partícu-

las desses minerais cuja intensidade decresce com a distância da superfície da partícula.

Como as moléculas de água são de natureza dipolar, ou seja, carregadas negativa e posi-

tivamente, elas se orientam neste campo elétrico e experimentam uma força na superfície

da partícula;

• Os pares de elétrons não compartilhados presentes nas moléculas de água podem ser

eletricamente atraídos a cátions trocáveis que podem estar adsorvidos sobre a superfície

de argila;

• As moléculas de água podem, ainda, ser atraídas às superfícies sólidas pelas forças de

London-van der Waals, que são forças de alcance curto decrescendo rapidamente com a

distância da superfície.

Já pelo fenômeno da capilaridade a retenção ocorre nos microporos dos agregados, sendo

sempre associado a uma interface curva ar-água cuja curvatura depende do tamanho do poro.

Como a variedade de poros no solo, em forma e diâmetro, é grande, aplicando uma energia

determinada os poros a se esvaziarem primeiro são os maiores. Quanto menor o poro, mais a

água se encontra retida. A figura 2.4 ilustra os processos envolvidos na retenção de água no

solo.

O potencial total da água no solo representa a diferença de energia entre a água no solo e a

água padrão, ou seja, “água livre, de mesma concentração e temperatura que a água no solo e

cuja superfície plana é considerada como referência gravitacional e sujeita à pressão

atmosférica” (LIBARDI, 2014). Quando somente o potencial matricial possui efeito sobre o

potencial total da água no solo, ele pode ser determinado através da diferença entre a energia

potencial da água no solo (E) e a energia potencial da água padrão (E0), divididos por um

volume de água (Va). Esta relação pode ser verificada na equação 2.2.

Ψm =
E − E0

Va
. (2.2)

Como a água no solo está sujeita a ações das forças mátricas (capilaridade e adsorção), ela

possui liberdade de movimento reduzida se comparada com a água livre. Isto leva a uma

conclusão de que a energia potencial da água no solo é menor do que a energia da água padrão.

Logo, o potencial matricial é uma quantidade negativa. É comum a utilização do valor

absoluto do potencial matricial. Neste caso, o potencial matricial passa a ser denominado de
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Figura 2.4: Retenção de água por agregados no solo pelas forças de adsorção, formando um
filme contínuo de água, e capilaridade, através da interface curva ar-água (adaptado de Libardi
(2005)).

tensão da água no solo. Entretanto, o termo “potencial matricial” continua sendo utilizado em

muitos trabalhos, mesmo sendo considerado o seu valor absoluto.

A componente matricial do potencial total da água no solo não pode ser facilmente calculada,

tendo sua medida feita através de processos experimentais por meio de tensiômetros

(equipamento que mede a tensão com que a água está retida no solo) ou instrumentos de

pressão.

Na prática, para remover a solução retida no solo e deixá-la livre da influência da matriz do

solo é necessário despender energia e, neste caso, essa energia deverá ser tanto maior quanto

menor for o conteúdo de água no solo. Portanto, quanto maior for a umidade (θ) de um solo,

menor será a magnitude do potencial matricial (Ψm) envolvido. Logo, o potencial matricial

pode ser dado em função da umidade do solo.

O gráfico desta relação entre a umidade e o potencial matricial é denominado de curva de

retenção de água no solo, ou curva característica de água no solo. Para Klute e Dirksen (1986,

apud CANCINO CALLE, 2000) a curva de retenção é uma representação da capacidade do

solo de armazenar água.

Existem duas formas de se obter a curva de retenção experimentalmente:
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Por secamento : a amostra de solo previamente saturada é exposta a potenciais matriciais

crescentes, diminuindo a umidade do solo.

Por molhamento : a amostra de solo seca tem o seu potencial matricial reduzido gradativa-

mente, aumentando a umidade do solo.

Um problema encontrado na obtenção empírica da curva de retenção está no fato de que estes

dois métodos geram curvas não idênticas. Para um mesmo valor de potencial matricial, a

umidade verificada para o método por secamento é maior do que pelo método por molhamento.

A este fenômeno damos o nome de histerese. Hillel (1998) descreve que as causas desse

fenômeno podem ser devidas a: não uniformidade dos poros; diferentes ângulos de contato,

que são maiores em umedecimento, gerando raios de curvatura diferentes para cada situação; a

retenção do ar em poros, gerando bolhas de ar, durante o processo de umedecimento; e

alterações na estrutura do solo causadas pelo histórico de umedecimento e secamento.

Em uma tentativa de sanar estes problemas e diminuir o tempo levado para obter a curva de

retenção de água no solo, vários modelos empíricos (VAN GENUCHTEN, 1980; ROSSI e

NIMMO, 1994; ASSOULINE et al., 1998), obtidos por suposições feitas a partir da

observação de dados experimentais, têm sido propostos.

Dentre os principais fatores que interferem na forma da curva de retenção podemos citar a

distribuição granulométrica (frações de areia, silte e argila), a distribuição dos poros do solo, a

estrutura do solo e a mineralogia (características físicas e químicas) das partículas (CANCINO

CALLE, 2000). Segundo Hillel (1998), a forma da curva de retenção depende fortemente da

textura do solo. Solos mais argilosos tendem a reter mais água que solos arenosos para cada

valor de potencial matricial aplicado. Solos arenosos possuem a maioria dos poros

relativamente grandes e uma vez que esses poros sejam esvaziados sob um determinado

potencial matricial, somente uma pequena quantidade de água permanece retida no solo. Já

solos argilosos possuem seu espaço poroso distribuído mais uniformemente, logo uma

quantidade maior de água é retida por adsorção. Desse modo, o aumento do potencial matricial

causa uma redução mais gradativa na umidade do solo. Essa relação da textura com a curva de

retenção de água no solo pode ser observada na figura 2.5.

O valor de umidade a um potencial nulo indica a umidade que preenche por completo o espaço

poroso do solo, sendo chamada de umidade de saturação. Aumentado-se o valor do potencial

matricial, observa-se um comportamento assintótico a determinado valor de umidade, que

indica a umidade que continua retida no solo mesmo com o aumento do potencial aplicado.

Esta umidade é chamada de umidade residual. Como pode ser verificado de forma



17

Figura 2.5: Efeito da textura na curva de retenção de água no solo (adaptado de Hillel (1998)).

generalizada na figura 2.5 e pelo que foi dito anteriormente, solos argilosos possuem umidade

de saturação maior do que solos arenosos, e o mesmo também vale para a umidade residual.

2.3 Influência da matéria orgânica na retenção de água no
solo

A quantidade de matéria orgânica no solo depende, dentre outros fatores, da entrada de

material orgânico, da sua taxa de mineralização (transformação dos compostos orgânicos em

inorgânicos), da textura do solo e do clima (COSTA, SILVA e RIBEIRO, 2013). Principal

fonte de nutrientes para as plantas, seu conteúdo, na maioria dos solos, pode variar de 1 a 10%,

estando em maior quantidade nos horizontes superficiais do solo (REICHARDT e TIMM,

2004).

Além de contribuir para o enriquecimento de nutrientes no solo, a matéria orgânica também

possui influência sobre o comportamento físico do solo, atuando direta ou indiretamente sobre

alguns de seus fatores físicos.

As características da matéria orgânica que influenciam diretamente os fenômenos físicos e

químicos do solo são a sua alta área específica, variando de 800 a 900 m2.g−1 e a sua grande

quantidade de carga elétrica negativa (MEURER et al., 2000 apud BRAIDA, 2004; BRAIDA

et al., 2011). Estas cargas elétricas são provenientes dos componentes das substâncias

originadas da oxidação e polimerização da matéria orgânica, denominadas ácidos húmicos e

fúlvicos, conferindo à matéria orgânica cerca de 70 a 80% da responsabilidade na CTC em
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solos tropicais (FAVORETTO, 2007).

De forma indireta, a matéria orgânica atua como um elemento cimentante, contribuindo para a

formação de agregados e consistência do solo, e, consequentemente, na distribuição do

tamanho dos poros (BRAIDA et al., 2011). Para Bayer e Mielniczuk (2008), a agregação do

solo é a principal característica física do solo afetada pela matéria orgânica, afetando,

indiretamente, as demais características físicas do solo como a densidade, a porosidade e a

capacidade de retenção e infiltração de água.

Os fenômenos envolvidos na retenção de água no solo, capilaridade e adsorção, estão

diretamente relacionados com o tamanho dos poros e a ocorrência de superfícies carregadas

eletrostaticamente. Portanto, pelos efeitos que a matéria orgânica possui nas características

físicas e químicas do solo, citados anteriormente, é esperado que ela possua influência sobre a

retenção de água no solo.

Apesar de a teoria indicar uma influência considerável da matéria orgânica sobre a retenção de

água no solo, Braida et al. (2011) e Rawls et al. (2003) citam trabalhos que possuem

resultados contraditórios. O primeiro autor cita, por exemplo, o trabalho de Sommerfeldt e

Chang (1986), em que a a adição de matéria orgânica (esterco de gado) permitiu retenção de

água considerável apenas sob uma tensão de 1500 kPa, não ocorrendo o mesmo para uma

tensão de 20 kPa. O segundo autor faz um levantamento de 12 trabalhos, analisando a

influência de matéria orgânica na retenção de água sob dois valores de tensão, 33 kPa e 1500

kPa. Destes, apenas 5 obtiveram resposta positiva para o primeiro valor de tensão, e 8 para o

segundo valor de tensão. Estes mesmos autores afirmam que estes resultados são provenientes

de procedimentos inadequados adotados para verificar a relação entre as variáveis, além da

dificuldade em se isolar os efeitos dos diferentes fatores envolvidos diretamente no fenômeno.

Para Rawls et al. (2003) e Rawls, Nemmes e Pachepsky (2004) é importante incluir a matéria

orgânica como variável de entrada em equações para estimar a umidade do solo a fim de

reduzir os erros de estimativa desses modelos. Em seus trabalhos foram verificados que a

contribuição de matéria orgânica na retenção de umidade variou entre 14% a 75% e que solos

arenosos possuem mais sensibilidade à retenção de umidade sob influencia da matéria orgânica

do que solos argilosos.

2.4 Modelos de dinâmica de água no solo

Como já foi visto, o movimento da água em estado líquido no solo se dá sempre que houver

uma diferença de potencial hidráulico, ou potencial total, em diferentes pontos do sistema.
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Esse movimento se dá no sentido do maior potencial para o menor.

Considerando as idéias de Darcy de 1856, que modela o movimento de água em meio poroso

saturado, Buckingham, em 1907, propõe um modelo (equação 2.3) que descreve o movimento

de água em meio poroso não saturado, levando em conta as relações entre o potencial matricial

da água no meio poroso e a condutividade hidráulica, que expressa a facilidade com que a água

se movimenta por este meio (LIBARDI, 2005). Buckingham foi o primeiro a definir o

potencial matricial e a condutividade hidráulica como funções da umidade do solo.

q = −K(θ) · ∇Ψ (2.3)

ou ainda, considerando somente o fluxo vertical de água,

q = −K(θ)
∂Ψm(θ)

∂z
, (2.4)

sendo q a densidade de fluxo de água no solo, ou seja, o volume de água que passa por unidade

de tempo e pela unidade de área de seção transversal, θ a umidade volumétrica do solo, K(θ) a

condutividade hidráulica do solo não saturado, Ψm(θ) o potencial matricial da água no solo e z

a coordenada vertical de posição.

Na equação 2.3 a densidade de fluxo de água é proporcional à força que atua sobre a água, isto

é, o gradiente do potencial. O sinal negativo na equação indica que o fluxo da água possui

sentido inverso ao sentido do gradiente de potencial. O sentido do gradiente é tomado, por

definição, no sentido de crescimento do campo potencial, ou seja, do menor valor de potencial

para o maior. Como o movimento da água se dá no sentido de maior potencial para o menor, a

inclusão do sinal negativo é necessária.

Em 1931, Lorenzo A. Richards propõe uma equação que descreve o fluxo de água em meio

poroso não saturado, combinando a equação da continuidade com a equação de

Darcy-Buckingham (2.4), que considera o potencial total da água no solo ao invés de somente

o potencial matricial (LIBARDI, 2005). Utilizando a equação da continuidade, Richards insere

em sua equação o princípio da conservação da massa de água contida em um volume

elementar do solo. Isto permite quantificar a umidade do solo em uma determinada posição e

em um determinado tempo. A equação de Richards é a mais utilizada para descrever o

fenômeno de fluxo de água em um solo não saturado. A equação 2.5 representa a equação de

Richards para o fluxo vertical de água no solo.
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∂θ

∂t
= ~∇.

[
K(θ)~∇Ψ

]
, (2.5)

ou ainda, considerando somente o fluxo vertical,

∂θ

∂t
=

∂

∂z

[
K(θ)

∂Ψ

∂z

]
. (2.6)

A não-linearidade da equação de Richards torna inviável a obtenção de soluções analíticas,

exceto aquelas tomadas a partir de linearizações com base em considerações sobre a relação da

condutividade hidráulica com a umidade do solo. Alguns métodos numéricos têm sido

propostos para resolver esta equação, entretanto, segundo Célia, Bouloutas e Zarba (1990,

apud MANICH e GUETTER, 2011) estes métodos podem apresentar problemas de

convergência.

Van Genuchten (1980) apresenta em seu trabalho uma equação para estimar a condutividade

hidráulica relativa, Kr = K(θ)
K0

, em solos não saturados. Esta expressão (equação 2.8) se baseia

nas informações da curva de retenção de umidade do solo e no modelo proposto por Mualem

(1976), o qual se baseia nas informações da curva de retenção e condutividade hidráulica do

solo saturado para estimar o valor da condutividade hidráulica no solo insaturado. Em

adaptação deste último autor, van Genuchten ainda propõe uma equação de relação entre a

umidade de um solo não saturado com o potencial matricial aplicado, indicado pela equação

2.7.

θ = θr +
θs − θr

[1 + |αΨm|n]
m , (2.7)

sendo θ a umidade volumétrica do solo, θr a umidade volumétrica residual do solo, θs a

umidade volumétrica de saturação do solo, Ψm o potencial matricial da água solo e α, m e n

constantes empíricas (adimensionais).

Combinando a equação 2.7 com o modelo de Mualem (1976) e considerando a simplificação

de que m = 1− 1
n

também proposta em Mualem (1976), a equação de van Genuchten para

condutividade hidráulica do solo se torna



21

K(θ) = K0ω
`

1−

1− ω
1

m

m2

, (2.8)

na qual

ω =
θ − θr
θs − θr

é a saturação efetiva, K0 é a condutividade hidráulica do solo saturado e ` um parâmetro

empírico estimado por Mualem (1976) e considerado igual a aproximadamente 0, 5 para a

maioria dos solos (LIBARDI, 2005).
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3 Lógica Fuzzy

3.1 Conjuntos Fuzzy

Introduzida em 1965 pela publicação do artigo Fuzzy Sets do matemátco Lotfi A. Zadeh, a

lógica fuzzy tem sido estudada e aperfeiçoada em uma tentativa de modelar, matematicamente,

variáveis julgadas subjetivas (BARROS, 1997). A lógica clássica, do verdadeiro ou falso, do é

ou não é, muitas vezes não consegue representar a multivalência do mundo real.

Para a lógica clássica, um elemento pertence a um conjunto ou não. Zadeh (1965) cita que,

comumente, as classes de objetos encontradas no mundo físico real não possuem um critério

precisamente definido de pertinência. Como exemplo, considere a classe de pessoas altas. É

subjetivo concluir se uma pessoa de 1,80 m pertence a este conjunto ou não quando se sabe que

existem pessoas com 2,00 m ou mais. Também é subjetivo concluir quais valores de umidade

de um solo são considerados altos ou quais valores de potencial matricial (tensão) são baixos.

Para contornar as limitações da matemática clássica e incluir estas questões subjetivas,

inicialmente Zadeh baseou-se no fato de que qualquer conjunto clássico pode ser caracterizado

por uma função, denominada função característica (BARROS e BASSANEZI, 2010), que

resulta em 1 se o elemento pertence ao conjunto ou zero caso contrário (equação 3.1).

χA(x) =

{
1 se x ∈ A
0 se x /∈ A

. (3.1)

Claramente, a imagem desta função está contida no conjunto {0, 1}, ou seja, representa

somente a relação binária: pertence/não pertence. Para um conjunto fuzzy esta função

característica representa mais do que a relação de pertencer ou não pertencer, ela indica o grau

de pertinência do elemento ao conjunto considerado. Este grau está contido no intervalo [0, 1]

e, quanto mais próximo de 1 o grau estiver, mais forte será a relação de pertinência.

Por exemplo, considere o conjunto dos números reais próximos de 5. É de se esperar que o

grau de pertinência do elemento 6 seja maior do que o grau de pertinência do elemento 7.
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Um subconjunto fuzzy será definido como um par ordenado composto do seu elemento seguido

de seu grau de pertinência, como formalizado abaixo:

Definição 3.1. Um subconjunto fuzzy A de um conjunto clássico U é caracterizado por uma

função

µA : U → [0, 1]

pré-fixada, chamada função de pertinência do subconjunto fuzzy A. Esse subconjunto pode ser

representado da forma

A = {(x, µA(x)), x ∈ U, µA(x) ∈ [0, 1]} .

O suporte de um conjunto fuzzy A representa o conjunto dos elementos que possuem grau de

pertinência não nulo a A e será definido como o subconjunto clássico de U da forma

suppA = {x ∈ U : µA(x) > 0} .

Como exemplo de um conjunto fuzzy tome a textura de um solo considerado arenoso. Pelo

visto no Capítulo 2, um solo é considerado arenoso se o percentual de argila estiver entre 0% e

15%. Desse modo, uma função de pertinência possível para este conjunto fuzzy, denominado

por A, pode ser dada por

µA(x) =


0, 15− x

0, 15
se 0 ≤ x ≤ 0, 15

0 caso contrário
.

Graficamente, este conjunto fuzzy está representado pela figura 3.1, segundo sua função de

pertinência considerada. Observe que o valor de textura que pertence 100% à classe Arenosa é

aquele que possui 0% de argila. À medida que o percentual de argila aumenta, o grau de

pertinência da textura a essa classe decai, sendo nulo a partir do valor de 15% de argila. Para

este caso é considerado um decrescimento linear na função de pertinência, entretanto, podem

ser considerados outros tipos de funções que melhor descrevam o comportamento esperado

para a variável que se está analisando. Este fato sustenta a vantagem de se modelar variáveis

como textura como um conjunto fuzzy. A teoria diz que a textura é arenosa se o teor de argila

estiver entre 0 a 15%, passando para textura média a partir de 15% de argila. A modelagem
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por conjunto fuzzy pode considerar esta passagem de forma gradual, mais coerente com a

realidade. Assim, um valor de 14,9% de argila pode ser melhor representado como um valor

que está em uma região de mudança de classe textural, já que seu grau de pertinência à classe

arenosa é baixo.

Figura 3.1: Gráfico da função de pertinência do conjunto fuzzy Textura Arenosa, considerado
no exemplo da seção.

3.2 Operações com conjuntos fuzzy

Algumas operações básicas com conjuntos fuzzy, como união, interseção e complementação,

devem ser bem entendidas, posto que serão recorrentes no desenvolvimento da teoria fuzzy.

Existem diferentes formas de se definir estas operações. As definições apresentadas a seguir

são as formas clássicas de se definir estas operações, propostas por Zadeh (1965). O leitor que

desejar aprofundar os conhecimentos de lógica fuzzy pode consultar o texto de Barros e

Bassanezi (2010).

Sejam A e B dois subconjuntos fuzzy de U , com funções de pertinência representadas por µA e

µB, respectivamente.

Definição 3.2. A união entre A e B é o subconjunto fuzzy de U cuja função de pertinência é

dada por

µ(A∪B)(x) = max {µA(x), µB(x)} , x ∈ U.

Definição 3.3. A interseção entre A e B é o subconjunto fuzzy de U cuja função de pertinência

é dada por

µ(A∩B)(x) = min {µA(x), µB(x)} , x ∈ U.
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(a) Gráfico de µA (b) Gráfico de µB

(c) Gráfico de µ(A∪B) (d) Gráfico de µ(A∩B)

(e) Gráfico de µA′

Figura 3.2: Ilustração de operações básicas com conjuntos fuzzy

Definição 3.4. O complementar deA é o subconjunto fuzzyA′ de U , cuja função de pertinência

é dada por

µA′(x) = 1− µA(x), x ∈ U.

A figura 3.2 ilustra as definições clássicas para as operações de união, interseção e

complementar de conjuntos fuzzy.

Definição 3.5. Seja F um subconjunto fuzzy de U e α ∈ [0, 1]. O α-corte de F é o subconjunto

clássico de U definido por

[F ]α = {x ∈ U : µF (x) ≥ α}

para 0 < α ≤ 1.
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Figura 3.3: Ilustração de alfa-corte. Neste caso o alfa-corte é composto pelo intervalo [2,4].

Definição 3.6. Um subconjunto fuzzy A é dito normal se todos os seus α-cortes forem não

vazios.

3.3 Números Fuzzy

Em diversas situações do cotidiano, principalmente em processos de modelagem, a tomada de

medidas, ou parâmetros, envolvem informações imprecisas sobre valores numéricos. Tal como

na medida da umidade de um solo, em que erros de precisão provenientes dos instrumentos de

medida, falha humana, dentre diversos outros fatores, podem afetar o resultado do parâmetro.

O que acontece na maioria das vezes é a decisão por tomar um valor “preciso” para o

parâmetro, ao invés de um valor em torno dele.

Por exemplo, se após um experimento foi verificado que a umidade volumétrica de um solo é

0,235 cm3/cm3, seria razoável considerar um valor em torno deste, considerando falhas nas

medições. Para estas considerações, a lógica fuzzy lida de maneira eficaz através dos números

fuzzy, que são um caso particular de um conjunto fuzzy.

Definição 3.7. Um subconjunto fuzzy A é chamado de número fuzzy quando o conjunto uni-

verso no qual µA está definida, é o conjunto dos números reais R e satisfaz às condições:

• todos os α-cortes de A são não vazios, com α ∈ [0, 1];

• todos os α-cortes de A são intervalos fechados de R;

• suppA = {x ∈ R : µA(x) > 0} é limitado.

De outra forma, podemos definir um número fuzzy como um subconjunto fuzzy normal e

convexo. A convexidade, neste caso, implica que o gráfico da função de pertinência do
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subconjunto fuzzy tenha uma parte crescente e outra decrescente e, algumas vezes, alguma

parte plana (MCBRATNEY & ODEH, 1997).

Os números fuzzy mais comuns são os triangulares, trapezoidais e em forma de sino.

Um número fuzzy triangular é definido por uma tripla (a;u; b) em que a e b são os limites

inferior e superior, respectivamente, do intervalo [a, b] e u é o valor do intervalo [a, b] que

possui grau 1 pela função de pertinência, cuja forma é

µA(x) =


x− a
u− a

se a < x ≤ u

x− b
u− b

se u < x ≤ b

0 caso contrário

. (3.2)

A figura 3.4 ilustra um número fuzzy triangular.

Figura 3.4: Gráfico de número fuzzy triangular

Um número fuzzy trapezoidal é definido por uma quádrupla (a; b; c; d) em que a e d são,

respectivamente, os limites inferior e superior do intervalo [a, d] com grau 0 na função de

pertinência, e b e c são, respectivamente, os limites inferior e superior do intervalo [b, c] que

possui grau 1 na função pertinência. A função de pertinência de um número fuzzy trapezoidal

tem a forma

µA(x) =



x− a
b− a

se a ≤ x < b

1 se b ≤ x ≤ c
d− x
d− c

se c < x ≤ d

0 caso contrário

. (3.3)

A figura 3.5 ilustra um número fuzzy trapezoidal.
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Figura 3.5: Gráfico de número fuzzy trapezoidal.

Um número fuzzy tem forma de sino se sua função de pertinência for suave e simétrica em

relação a um número real u. Sua função de pertinência (equação 3.4) possui diferentes formas

sendo uma delas citada por Barros e Bassanezi (2010) com as entradas u, a e δ, sendo u o

valor central do intervalo (média) que possui grau de pertinência 1, a o valor que define a

amplitude de abertura da forma de sino da função (desvio-padrão) e δ o valor que define as

limitações do intervalo, conforme indicado na figura 3.6.

µA(x) =

 e
−
(x− u

a

)2

se u− δ ≤ x ≤ u+ δ

0 caso contrário
. (3.4)

Figura 3.6: Gráfico de número fuzzy em forma de sino.

A escolha do número fuzzy a ser utilizado na modelagem depende das condições que se queira

propor sobre a variável. Apesar de existirem diferentes números fuzzy para representação de

uma variável, os mais utilizados são os números fuzzy triangular e trapezoidal, pela

simplicidade de suas funções de pertinência e modelagem computacional. Pedrycz (1994) cita

que algumas características destes números fuzzy que justificam seu uso na modelagem são a

sua informação satisfatória acerca do termo linguístico e a sua distribuição linear sobre o

domínio da variável.
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3.4 Relações Fuzzy e operadores lógicos

Assim como na lógica clássica, na lógica fuzzy pode-se modelar a interação entre elementos de

conjuntos diversos. Estas interações são as chamadas relações. Enquanto uma relação na

lógica clássica indica se há ou não alguma associação entre os objetos considerados, na lógica

fuzzy uma relação indica também qual o grau desta associação.

Definição 3.8. Uma relação clássicaR sobre U1×U2×...×Un é qualquer subconjunto clássico

de U1 × U2 × ...× Un.

Em particular, a relaçãoR pode ser representada por sua função característica

χR : U1 × U2 × ...× Un → {0, 1} ,

definida por

χR(x1, x2, ..., xn) =

{
1 se (x1, x2, ..., xn) ∈ R
0 se (x1, x2, ..., xn) /∈ R

.

Definição 3.9. Uma relação fuzzy sobre U1 × U2 × ... × Un é qualquer subconjunto fuzzy de

U1 × U2 × ...× Un.

Portanto, uma relação fuzzyR é definida por uma função de pertinência

µR : U1 × U2 × ...× Un → [0, 1].

Esta operação se assemelha à interseção de conjuntos fuzzy, com a diferença de que na

interseção os conjuntos são de um mesmo universo enquanto que no produto cartesiano eles

podem ser de universos diferentes. Como exemplo, pode-se fazer o produto cartesiano (relação

fuzzy) entre conjuntos fuzzy para determinadas classes de textura do solo e de potencial

matricial, que são de universos distintos.

Definição 3.10. O produto cartesiano fuzzy dos subconjuntos A1, A2, ..., An de U1, U2, ..., Un,

respectivamente, é a relação fuzzy A1 × A2 × ...× An cuja função de pertinência é dada por

µA1,A2,...,An(x1, x2, ..., xn) = min
{
µA1(x1), µA2(x2), ..., µAn(xn)

}
.
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As sentenças utilizadas pela lógica normalmente são acompanhadas de conectivos lógicos

como e, ou, não e implicação. Como exemplo pode ser tomada a seguinte sentença:

Textura do solo argilosa e tensão de sucção baixa⇒ Umidade do solo alta,

que usa os conectivos e, que relacionam as proposições, e implicação, indicado pela seta⇒,

para indicar a conclusão das proposições.

Para a lógica clássica, uma sentença verdadeira possui valor lógico igual a 1, enquanto uma

sentença falsa possui valor lógico igual a 0. Tomando duas proposições p e q e observando os

valores das tabelas verdades para os conectivos citados, podemos associar operadores

matemáticos que correlacionam esses conectivos.

Conectivo e: Representado pelo símbolo ∧, sua tabela verdade indica a utilização do operador

mínimo.

Tabela 3.1: Tabela verdade para conectivo ∧.
p q p ∧ q
1 1 1
1 0 0
0 1 0
0 0 0

Logo, o operador ∧ pode ser definido por

∧ : {0, 1} × {0, 1} → {0, 1}

p ∧ q = min {p, q} .

Conectivo ou: Representado pelo símbolo ∨, sua tabela verdade indica a utilização do opera-

dor máximo.

Tabela 3.2: Tabela verdade para conectivo ∨.
p q p ∧ q
1 1 1
1 0 1
0 1 1
0 0 0

Logo, o operador ∨ pode ser definido por
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∨ : {0, 1} × {0, 1} → {0, 1}

p ∨ q = max {p, q} .

Conectivo negação: Representado pelo símbolo ¬, esse operador é unário:

¬ : {0, 1} → {0, 1}

p→ ¬p,

sendo ¬1 = 0 e ¬0 = 1.

Tabela 3.3: Tabela verdade para conectivo ¬.
p ¬ p
1 0
0 1

Este operador pode ser representado por: ¬p = 1− p.

Conectivo implicação: Representado pelo símbolo⇒, é um operador binário, assim como os

conectivos ∧ e ∨.

⇒: {0, 1} × {0, 1} → {0, 1}

(p, q) 7→ (p⇒ q) .

Tabela 3.4: Tabela verdade para conectivo⇒.
p q p⇒ q
1 1 1
1 0 0
0 1 1
0 0 1

É possível representar o conectivo⇒ através de três fórmulas diferentes, utilizando os

conectivos anteriores, sendo a mais simples dada por

(p⇒ q) = (¬p) ∨ q.
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Avaliando agora a lógica fuzzy, os valores lógicos assumidos por uma variável estão contidos

no intervalo [0, 1]. Por isto, os conectivos vistos anteriormente devem ser estendidos, de forma

a contemplar esta característica da lógica fuzzy. Estas extensões são obtidas pelas normas e

conormas, definidas a seguir.

Definição 3.11. O operador ∆ : [0, 1] × [0, 1] → [0, 1], ∆ (x, y) = x∆y, é uma t-norma se

satisfaz às condições:

1. 1∆x = x e 0∆x = 0;

2. x∆y = y∆x;

3. x∆ (y∆z) = (x∆y) ∆z;

4. se x ≤ u e y ≤ w, então x∆y ≤ u∆w.

A operação t-norma faz a extensão ao operador ∧ para o conectivo “e”.

Definição 3.12. O operador ∇ : [0, 1] × [0, 1] → [0, 1], ∇ (x, y) = x∇y, é uma t-conorma se

satisfaz as condições:

1. 0∇x = x e 1∆x = 1;

2. x∇y = y∇x;

3. x∇ (y∇z) = (x∇y)∇z;

4. se x ≤ u e y ≤ w, então x∇y ≤ u∇w.

A operação t-conorma faz a extensão ao operador ∨ para o conectivo “ou”.

Definição 3.13. O operador η : [0, 1]→ [0, 1], é uma negação se satisfaz as condições:

1. η (0) = 1 e η (1) = 0;

2. η (η (x)) = x;

3. η é descrescente.

Como exemplo, pode ser considerado η (x) = 1− x.

Definição 3.14. Um operador⇒: [0, 1] × [0, 1] → [0, 1] é uma implicação fuzzy se satisfaz as

condições:
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1. reproduz a tabela da implicação clássica;

2. é decrescente na primeira variável, isto é, se a ≥ b então (a⇒ x) ≤ (b⇒ x), para cada

x ∈ [0, 1];

3. é crescente na segunda variável, isto é, se a ≥ b então tem-se (x⇒ a) ≥ (x⇒ b), para

cada x ∈ [0, 1].

Como exemplo de implicação fuzzy pode ser citada a implicação de Gödel (BARROS e

BASSANEZI, 2010), definida pela equação abaixo:

(x⇒ y) = g(x, y) =

{
1 se x ≤ y

y se x > y
.

3.5 Sistema de Inferência Fuzzy

Tomar decisões no mundo real normalmente requer uma sequência de ações a partir do

conhecimento de informações que são, muitas vezes, imprecisas. As informações são

processadas por um indivíduo que as interpreta segundo seus parâmetros e, em seguida, toma

as atitudes necessárias.

Todo o processo de receber as informações até a decisão das atitudes segue uma sequência de

ordens linguísticas, que são traduzidas por um conjunto de regras que fazem com que o

sistema de inferência tome a decisão correta do que fazer ou responder.

Por exemplo, se tomarmos um conjunto de variáveis que influem no resultado da umidade de

um solo, como textura e potencial matricial (em valor absoluto), e essas variáveis linguísticas

estão sujeitas às condições de: umidade do solo ser baixa, média ou alta; textura do solo ser

arenosa ou argilosa; e potencial matricial ser baixo ou alto. Sabemos que quanto mais argiloso

for o solo, mais umidade este solo reterá, do mesmo modo que quanto menor for o potencial

matricial (em magnitude), maior será a umidade neste solo. Assim, entrando com as

informações de textura arenosa e potencial matricial alto, o resultado óbvio pela decisão do

controlador, que neste caso poderia ser um pesquisador da área ou conhecedor das regras

envolvidas no fenômeno, seria umidade do solo baixa.

Segundo Barros e Bassanezi (2010), “(...) uma tentativa de reproduzir a estratégia de um

controlador humano, na execução de suas tarefas, é dada pelos controladores fuzzy”. Um

controlador fuzzy ou um sistema de inferência fuzzy são casos típicos de um Sistema Baseado
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em Regras Fuzzy (SBRF), ou seja, um sistema que interpreta informações fuzzy através da

lógica fuzzy para produzir uma resposta.

Assim como no exemplo dado acima, os sistemas de inferência fuzzy realizam suas tarefas por

meio de termos linguísticos, na forma de conjuntos fuzzy, que são utilizados para transcrever a

base de conhecimentos por meio de um conjunto de regras, denominado base de regras fuzzy

(BARROS e BASSANEZI, 2010).

Um sistema de inferência fuzzy é constituído dos seguintes módulos, representados no

esquema da figura 3.7,

Figura 3.7: Esquema geral de sistema de inferência fuzzy

3.5.1 Módulo de fuzzificação

Nesta etapa, as variáveis de entrada e saída do sistema são modeladas por conjuntos (ou

números) fuzzy. A decisão das funções de pertinência a serem utilizadas para cada variável

linguística é realizada neste momento, fazendo-se necessário a ajuda de um especialista da

área para a correta modelagem das entradas do sistema. Cada conjunto fuzzy de cada variável

de entrada é representado por um termo lingüístico, como baixo, médio, alto, e outros mais.

3.5.2 Módulo da base de regras

Nesta etapa, o sistema de inferência fuzzy interpreta as entradas do sistema por meio de um

conjunto de regras da forma

Se estado Então resposta,

também chamada de proposição, em que estado representa a combinação dos valores das

variáveis de entrada, e resposta o valor da variável de saída, todos representados por conjuntos

fuzzy.
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3.5.3 Módulo de inferência fuzzy

Nesta etapa cada proposição fuzzy é tratada com as ferramentas da lógica fuzzy, ou seja, aqui se

definem os conectivos lógicos (t-normas e t-conormas) usados para estabelecer a relação fuzzy

que modela a base de regras. Para Amendola, Souza e Barros (2005), “(...) é deste módulo que

depende o sucesso do sistema fuzzy já que ele fornecerá a saída fuzzy a ser adotada pelo

controlador a partir de cada entrada fuzzy”. Dentre os métodos de inferência fuzzy, os mais

comuns na literatura são o método de Mamdani e o método de Takagi-Sugeno-Kang (TSK).

Aqui, será utilizado o método de Mamdani, detalhado no capítulo 4.

3.5.3.1 Módulo de Defuzzificação

As saídas de um sistema de inferência fuzzy são compostas de conjuntos fuzzy, definidos pelas

variáveis de saída modeladas na etapa de fuzzificação e modificadas no módulo de inferência

fuzzy. Nesta etapa do controlador, o resultado fuzzy é transformado em um número real, em

contexto semelhante ao que ocorre na teoria estocástica, quando se usa a esperança matemática

para indicar um valor que melhor represente uma variável aleatória. Existem, na literatura,

diferentes métodos de defuzzificação que podem ser adotados, tais como o método do Centro

de Gravidade, método do Centro dos Máximos e o método da Média dos Máximos (BARROS

e BASSANEZI, 2010). Neste trabalho, será adotado o primeiro método citado, descrito em

detalhes no capítulo 4.

No capítulo 4 será descrito todo o processo de modelagem de um sistema de inferência fuzzy

para estimativa da umidade de um solo de acordo com as entradas de textura do solo, potencial

matricial e matéria orgânica do solo.



36

4 Material e Métodos

4.1 Região dos dados de solo analisados

A província petrolífera de Urucu, no Amazonas, é região de exploração de petróleo e gás pela

Petrobras desde 1988. A unidade, denominada Base de Operações Geólogo Pedro Moura

(UN-BSOL), está situada no município de Coari, a 650 km de Manaus. Parte desta província,

onde se concentram três poços de extração, possui uma área de aproximadamente 50.000

hectares. A área é coberta por Floresta Ombrófila Densa, ou seja, região de temperaturas altas

com alto índice de precipitação bem distribuído durante o ano e densa vegetação.

O estudo realizado em Petrobras (2010) abrangeu uma região de 6.800 hectares dentro da

Província estrutural Amazônica, em que se localizam as jazidas, áreas de empréstimos,

estradas, dutos e respectivos entornos. Esta região é composta por grande área sedimentar,

compartimentada por altos do embasamento em três bacias conhecidas como do Acre,

Solimões e Amazonas.

A construção do modelo deste trabalho teve como base os dados de solo da região citada,

levantados em Petrobras (2010). A escolha desta região se deu pelo fato de o orientador deste

trabalho, Prof. Dr. Marcos Bacis Ceddia, ser o coordenador do “Projeto Erosão Hídrica em

Solos Amazônicos”, publicado em Petrobras (2010), em convênio entre a empresa Petrobras

SA, a UFRRJ e a FAPUR (Fundação de Apoio à Pesquisa Científica e Tecnológica da UFRRJ).

O projeto busca um levantamento detalhado de solos da região amazônica para compreender os

processos erosivos na mesma. A utilização dos dados foi autorizada em proveito da construção

de um modelo que, futuramente, possa auxiliar estudos de fluxo de água em solos da Amazônia

central. Estes estudos serão facilitados pelo fato de diminuir a quantidade de dados coletados,

sendo necessária apenas a verificação da textura do solo e quantidade de matéria orgânica para

estimar a retenção de água pelo solo, reduzindo custos e tempo de análise dos dados.
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4.2 Características dos dados de solos analisados

Dos 121 perfis descritos em Petrobras (2010) apenas 44 perfis tiveram sua curva característica

de umidade determinada, visto que o processo de coleta de amostras e análise é muito

demorado. A escolha destes 44 perfis foi justificada pela análise de perfis que representassem

os diferentes padrões de solos da região. Destes, foram selecionados 42 perfis para análise e

construção do modelo, resultando em um total de 231 horizontes de solo. A exclusão de dois

perfis, reduzindo de 44 para 42 perfis analisados, ocorreu devido a um dos perfis não

apresentar dados completos de textura e o outro não apresentar dados necessários para definir a

umidade volumétrica em unidade de atm. As variáveis analisadas foram textura do solo,

quantidade de matéria orgânica (g/kg) e umidade volumétrica do solo (cm3/cm3).

Dos 231 horizontes tomados para análise inicial, 26,8% se encaixavam na classe textural

arenosa (até 15% de argila), 49,8% se encaixavam na classe textural média (15% a 35% de

argila), 22,9% na classe textural argilosa (de 35% a 60% de argila), e apenas um horizonte na

classe textural muito argilosa (mais de 60% de argila), porém com apenas 60,9% de argila em

sua composição. Por este motivo, a classe textural muito argilosa não é considerada na

modelagem.

Analisando, separadamente, os horizontes superficiais (A, AB e AC) e os não superficiais (B,

C e suas combinações), verificou-se que, como esperado, os horizontes superficiais continham

maior quantidade de matéria orgânica do que os não superficiais. O maior valor de quantidade

de matéria orgânica dos horizontes não superficiais foi de 14,1 g/kg (o que representa 1,41%

da fração sólida), porém com uma média de 4,6 g/kg (0,46%) e variância de 4,5 g/kg (0,45%).

O histograma de distribuição do teor de matéria orgânica dos horizontes não superficiais está

indicado na figura 4.1. Já para os horizontes superficiais, os valores variam de 3 g/kg (0,3%) a

60,3 g/kg (6,03%), com mediana 10,85 g/kg e variância de 55,4 g/kg. Esta alta variância

ocorre devido ao valor máximo verificado. Este valor está 30,7 g/kg maior que o segundo valor

de matéria orgânica mais alto, 29,6 g/kg. Por este motivo, como será visto mais a frente, o

valor de 60,3 g/kg foi desconsiderado na modelagem.

Como o objetivo deste trabalho é verificar a influência da matéria orgânica na estimativa de

retenção de umidade do solo, e os horizontes que, pelos processos físico-químicos, conseguem

acumular um teor mais alto de matéria orgânica são os superficiais, a análise deste trabalho

para construção do controlador levou em conta somente os horizontes de classificação A, AB

ou AC (verificar anexo A).

O total de horizontes superficiais para análise foi de 80 horizontes. Destes, 37 horizontes são



38

Figura 4.1: Distribuição de frequência dos dados de matéria orgânica dos horizontes não super-
ficiais do dados coletados em Petrobras (2010).

da classe textural arenosa, 41 são da classe textural média e apenas 2 da classe textural

argilosa. Esta quantidade baixa de horizontes com classe textural argilosa prejudica as

conclusões para esta classe. Porém, como a argila possui alta área específica e apresenta carga

superficial (REICHARDT e TIMM, 2004; CEDDIA, 2013), o papel da argila na retenção de

água no solo é semelhante ao da matéria orgânica. Logo, isto não prejudica as conclusões

sobre a influência da matéria orgânica na retenção de água no solo.

4.3 Características do modelo

Para construção do sistema de inferência fuzzy (figura 4.2), as variáveis envolvidas foram

analisadas estatisticamente, segundo sua distribuição, para a definição dos conjuntos fuzzy e

termos linguísticos representativos. A construção desses conjuntos, bem como a elaboração

das regras do sistema de inferência, são descritas a seguir.

Figura 4.2: Arquitetura do controlador para estimar umidade volumétrica do solo (cm3/cm3)
segundo entradas de textura (percentual de argila em decimal), potencial matricial (em atm) e
quantidade de matéria orgânica (em g/kg).
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4.3.1 Fuzzificação

4.3.1.1 Textura

Conforme visto no capítulo 2, seção 2.1, Embrapa (2006) sugere a junção de grupos de textura

formando novas classes texturais. Essas classes podem levar em conta apenas o teor de argila

presente na fração sólida, visto que a argila é a fração granulométrica que possui mais

características favoráveis a retenção de água se comparada com as frações de areia e silte.

Deste modo, a textura foi considerada com três intervalos abrangendo as classes arenosa,

média e argilosa (tabela 4.1), cada uma delas como um conjunto fuzzy do tipo fuzzy triangular

(figura 4.3). A interseção entre os intervalos de classe foi considerada conforme Belleza

(2014), pois um dos objetivos é poder comparar os novos resultados. Essa interseção é

conveniente para as incertezas do parâmetro, já que considera intervalos de transição entre as

faixas de textura. Do contrário, valores de textura que estivessem exatamente no ponto de

transição entre os números fuzzy teriam valor nulo na função grau de pertinência, e isto leva a

uma não influência destes valores de textura no modelo.

Como foi observado somente um horizonte de classe muito argilosa (mais de 60% de argila), o

intervalo de textura considerado foi de 0 a 0,6 (×100% de argila).

Tabela 4.1: Representações dos conjuntos fuzzy para as classes de textura consideradas no sis-
tema de inferência.

Textura do solo Conjunto Fuzzy
Arenosa (T1) [0; 0; 0,20]
Média (T2) [0,15; 0,25; 0,35]

Argilosa (T3) [0,30; 0,60; 0,60]

Figura 4.3: Funções de pertinência da variável textura do solo, de acordo com os parâmetros de
número fuzzy triangular da tabela 4.1
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4.3.1.2 Potencial Matricial

Como foi visto no capítulo 2, o potencial matricial, força responsável por reter a umidade no

solo, possui valor negativo. Neste trabalho é utilizado o termo potencial matricial para o seu

valor absoluto, como ocorre em diferentes trabalhos relacionados. Seu valor normalmente

utilizado considera o intervalo de 0 a 15 atm. Em particular, a umidade é calculada nos valores

de potenciais com medidas: 0, 0,1, 0,3, 0,6, 1, 3, 4, 5 e 15 atm. Belleza (2014) considera 7

intervalos de números fuzzy triangulares para esta variável, definidos sob o aconselhamento de

um especialista da área, Prof. Dr. Marcos Bacis Ceddia, do departamento de Solos do Instituto

de Agronomia da Universidade Federal Rural do Rio de Janeiro. Esta divisão leva em conta

construir uma quantidade mínima de conjuntos fuzzy que contenham cada um dos valores de

potencial normalmente utilizados em física do solo, ja citados neste parágrafo.

Neste trabalho, foram considerados 7 conjuntos fuzzy, sendo 6 do tipo triangular, compatíveis

com os primeiros 6 intervalos observados em Belleza (2014) e 1 do tipo trapezoidal (figura 4.4

e tabela 4.2), em substituição ao último intervalo triangular do trabalho citado. Esta

modificação pretendeu diminuir a amplitude deste último intervalo, considerando um grau 1 de

pertinência aos valores de potencial matricial a partir de 7 atm. Cabe ressaltar que o intervalo

de maior importância para este trabalho vai de 0 a 5 atm. Portanto, para valores maiores que 5

atm é sugerido aumentar o número de intervalos de classe desta variável.

Tabela 4.2: Representações dos conjuntos fuzzy para as classes de potencial matricial conside-
radas no sistema de inferência.

Potencial Matricial Conjunto Fuzzy
Baixíssimo (PM1) [0; 0; 0,1]

Muito Baixo (PM2) [0,05; 0,2; 0,3]
Baixo (PM3) [0,2; 0,4; 0,5]

Médio Baixo (PM4) [0,4; 0,75; 1]
Médio Alto (PM5) [0,75; 2; 3]

Alto (PM6) [2; 4; 5]
Muito Alto (PM7) [4; 7; 15; 15]
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Figura 4.4: Funções de pertinência da variável potencial matricial, de acordo com os parâmetros
de número fuzzy triangular e trapezoidal da tabela 4.2

4.3.1.3 Matéria orgânica

Para a variável matéria orgânica foram considerados 4 conjuntos fuzzy do tipo triangular,

denotados na tabela 4.3 e no gráfico das suas funções de pertinência (figura 4.5). Para

considerar esta divisão, a análise, descrita a seguir, foi feita sobre os dados de matéria orgânica

dos horizontes superficiais considerados, organizados segundo sua distribuição de valores e a

opinião do especialista consultado.

Definidas 4 faixas de maior concentração de valores de matéria orgânica, foram verificados os

desvios padrão e a moda dos dados amostrais de cada intervalo para formação dos conjuntos

fuzzy. O valor da moda, em cada intervalo, representa o valor que possui grau 1 na função grau

de pertinência. Os limites inferior e superior de cada intervalo foram modificados de acordo

com os seus desvios padrão da seguinte forma:

• O limite inferior é diminuído do valor do desvio padrão do intervalo, desde que não resulte

em número menor ao valor que possui grau 1 na função grau de pertinência do número

fuzzy exatamente anterior, se houver. Caso contrário, o limite inferior do conjunto fuzzy

passa a ser este valor.

• O limite superior é acrescido do valor do desvio padrão do intervalo, desde que não resulte

em número maior ao valor que possui grau 1 na função grau de pertinência do número

fuzzy exatamente posterior, se houver. Caso contrário, o limite superior do conjunto fuzzy

passa a ser este valor.
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Esta modificação dos limites dos intervalos permitiu a formação de interseção entre os

intervalos adjacentes, convenientes à subjetividade da transição entre as classes de teor de

matéria orgânica.

Com o intuito de não comprometer a análise estatística dos dados de matéria orgânica, foi

necessário remover o valor do perfil P065-A, pois o seu teor de matéria orgânica se distanciava

de modo significativo dos outros dados amostrais. Dos dados amostrais, cerca de 56% se

encaixam na classe de matéria orgânica baixa, 52% na classe média baixa, 18% na classe

média e 16% na classe alta.

Tabela 4.3: Representações dos conjuntos fuzzy para as classes de matéria orgânica consideradas
no sistema de inferência.

Matéria Orgânica NoFuzzy
Baixa (MO1) [3; 7,8; 11,2]

Média baixa (MO2) [8,97; 11,2; 17,33]
Média (MO3) [14,68; 18; 20,92]
Alta (MO4) [18,65; 21,1; 29,6]

Figura 4.5: Funções de pertinência da variável matéria orgânica, de acordo com os parâmetros
de número fuzzy triangular da tabela 4.3

4.3.1.4 Umidade do solo

Para fuzzificação da variável umidade volumétrica do solo, foram considerados os dados de

umidade observados para os horizontes analisados. Os dados de umidade foram divididos em 7

intervalos de acordo com os dados amostrais de ocorrência. Cada intervalo foi analisado de

forma semelhante à feita na variável matéria orgânica. Novamente, o desvio padrão de cada

intervalo permitiu uma modificação nos limites inferior e superior, e a moda de cada intervalo,

considerando arredondamentos de até 3 casas decimais, definiu os valores com grau 1 na

função grau de pertinência.
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Os intervalos dos conjuntos fuzzy, bem como os termos linguísticos considerados, podem ser

verificados na tabela 4.4 e as funções de pertinência constam no gráfico 4.6.

Tabela 4.4: Representações dos números fuzzy para as classes de umidade volumétrica do solo
consideradas no controlador.

Umidade do solo Conjunto Fuzzy
Baixa (U1) [0,12; 0,18; 0,21]

Média Baixa (U2) [0,183; 0,215; 0,246]
Média (U3) [0,219; 0,272; 0,312]

Média Alta (U4) [0,273; 0,319; 0,395]
Alta (U5) [0,358; 0,41; 0,45]

Muito Alta (U6) [0,41; 0,488; 0,51]
Altíssima (U7) [0,49; 0,529; 0,588]

Figura 4.6: Funções de pertinência da variável umidade do solo, de acordo com os parâmetros
de número fuzzy triangular da tabela 4.4

4.3.2 Base de regras

Para a construção da base de regras, do tipo Se...Então, do sistema de inferência fuzzy, foram

analisadas as umidades observadas nos dados para cada proposição considerada.

Por exemplo, para a proposição:

Se textura é arenosa e Potencial Matricial é baixo e Matéria Orgânica é baixa Então Umidade

do solo é Alta,

a obtenção da resposta “Umidade do solo é Alta” foi feita de acordo com observação do

espaço amostral de umidade para os horizontes que se encaixam neste perfil: textura arenosa,
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potencial matricial baixo e matéria orgânica baixa. Como a maioria dos valores observados

nos dados amostrais de umidade se encaixa no intervalo de umidade alta, a saída é considerada

sendo deste tipo.

A tabela 4.5 indica as regras formuladas para o controlador fuzzy.

Tabela 4.5: Base de regras para o sistema de inferência fuzzy de estimativa de umidade do solo.
Textura T1 T2 T3

Mat. Org. MO1 MO2 MO3 MO4 MO1 MO2 MO3 MO4 MO1 MO2 MO3 MO4

Po
t.

M
at

ri
ci

al

P1 U6 U6 U7 U7 U6 U6 U7 U7 U6 U6 U7 U7
P2 U5 U5 U6 U5 U5 U5 U5 U6 U5 U5 U6 U6
P3 U4 U4 U5 U4 U4 U5 U4 U5 U5 U5 U5 U5
P4 U4 U4 U5 U4 U4 U5 U4 U5 U4 U5 U5 U5
P5 U1 U2 U3 U2 U3 U4 U2 U4 U3 U3 U4 U4
P6 U1 U2 U3 U2 U3 U4 U2 U4 U3 U3 U4 U4
P7 U1 U2 U3 U2 U3 U3 U2 U4 U3 U3 U3 U4

4.3.3 Inferência Fuzzy

Como método de inferência para o sistema de inferência fuzzy foi escolhido o Método de

Inferência de Mamdani, por ser mais simples e intuitivo (BARROS e BASSANEZI, 2010).

Este método é utilizado em diversos trabalhos relacionados (SOUZA, 2007; LIMA et al.,

2010; BELLEZA, 2014; AFONSO, NETTO e VASCONCELLOS, 2014). A inferência de

Mamdani utilizada neste trabalho se baseia na composição max-min, conforme segue abaixo:

• Em cada Rj , da base de regras, a condicional “se x é Aj então u é Bj” é modelada pela

aplicação ∧ (mínimo);

• o conectivo lógico e é modelado pela t-norma ∧ (mínimo);

• o conectivo lógico ou é modelado pela t-conorma ∨ (máximo).

Em outras palavras, aplicando uma certa entrada x = (x1, x2, ..., xn) no controlador fuzzy, uma

ou mais regras são ativadas, indicando o conjunto fuzzy de saída indicado na base de regras.

Primeiro é considerado qual destes valores de entrada possui menor valor na sua função de

pertinência, digamos xi, com valor de pertinência φ(xi). A saída fuzzy em cada regra Rj ,

segundo Mamdani, será composta pelo conjunto fuzzy de saída com altura até φ(xi). Caso

ative mais de uma regra, será feita a união entre as saídas, pelo operador máximo. As figuras

4.7 e 4.8 ilustram este processo.
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Figura 4.7: Inferência de Mamdani para entradas de textura com 26% de argila, potencial ma-
tricial de 0,3 atm e matéria orgânica com 16 g/kg. Observe que esta entrada ativa duas regras
(R38 e R45). Na primeira, o menor grau de pertinência pertence à matéria orgânica, gerando
um subconjunto fuzzy de U5 na saída, conforme indicado. Da mesma forma ocorre na segunda
regra.

Figura 4.8: Da união das duas saídas ilustradas na figura 4.7 tem-se o subconjunto fuzzy de
saída pela inferência de Mamdani
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4.3.4 Defuzzificação

A saída gerada pela Inferência de Mamdani é um subconjunto fuzzy. Por fim, é preciso indicar

qual valor real esta saída representa. O método de defuzzificação utilizado neste trabalho foi o

Centro de Gravidade, ou Centro de Área, por ser o mais comumente utilizado. Neste método, o

valor real é dado pela média das áreas de todas as figuras que representam os graus de

pertinência de um subconjunto fuzzy, ou seja, é o valor real do domínio do subconjunto fuzzy

que divide pela metade a área definida pelo gráfico desse subconjunto. Segundo Barros e

Bassanezi (2010), “(...) este método é semelhante à média aritmética para uma distribuição de

frequências de uma dada variável, com a diferença de que os pesos são os valores µA(u)”,

para todo u pertencente ao intervalo de definição do conjunto fuzzy A.

As equações 4.1 e 4.2 representam o valor do centro de gravidade para domínios discretos e

contínuos, respectivamente.

G(A) =

∑n
i=0 uiµA(ui)∑n
i=0 µA(ui)

. (4.1)

G(A) =

∫
R uµA(u)du∫
R µA(u)du

. (4.2)

A figura 4.9 ilustra esse método.

Figura 4.9: Pelo método do Centro de Gravidade, para o exemplo visto na figura 4.8, o valor
real de saída de umidade será 0,352 cm3/cm3
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4.4 Utilização do software Matlab R©

Toda a simulação computacional foi feita através do Fuzzy Logic Toolbox, disponibilizado no

software Matlab R©, utilizado em cooperação com o Prof. Dr. João Frederico C. de A. Meyer,

DMA-Unicamp. Este toolbox dispõe de arquivos e funções que auxiliam o uso da teoria fuzzy.

Para utilização do toolbox, é necessário informar as variáveis de entrada e saída, definindo os

seus intervalos com a escolha do conjunto fuzzy desejado para representar cada intervalo. Em

seguida, opta-se pela inferência de Mamdani ou de TSK. A figura 4.10 indica a tela inicial

deste toolbox, já com as definições de variáveis e inferência fuzzy.

Figura 4.10: Tela inicial do Fuzzy Logic Toolbox (MATLAB R©), com as variáveis de entrada e
saída do controlador.

A definição das regras do sistema de inferência é feita manualmente, com a escolha das

variáveis das proposições e os conectivos entre elas, como mostra a figura 4.11.

Para gerar as saídas do sistema de inferência fuzzy, já defuzzificadas pelo método do Centro de

Gravidade, basta entrar com os valores das variáveis de entrada. Na tela de saída (figuras 4.12

e 4.13) observa-se 4 colunas. As 3 primeiras indicam as variáveis de entrada do sistema e a

última indica a variável de saída do sistema. Ao definir os valores de entrada é possível

observar a formação de linhas verticais nas colunas das variáveis de entrada, que percorrem

todos as regras verificando quais serão ativadas. O resultado, pela inferência de Mamdani, é

mostrado na última linha da última coluna, com o valor de saída, defuzzificado, na primeira
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Figura 4.11: Tela de entrada de regras do sistema de inferência pelo Fuzzy Logic Toolbox
(MATLAB R©).

linha. As figuras 4.12 e 4.13 ilustram um exemplo de saída pelo toolbox.
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5 Resultados

A validação de um modelo consiste em demonstrar que ele é uma representação razoável do

sistema que se esteja modelando. Em outras palavras, é mostrar que ele reproduz o

comportamento do sistema com fidelidade o suficiente para satisfazer os objetivos da análise

desejada. Para tanto, é preciso sortear de forma aleatória alguns dados dentre o espaço

amostral que serão utilizados na validação do modelo.

Para o modelo apresentado neste trabalho é verificada a formação de 12 grupos de combinação

entre classes de textura e matéria orgânica: TS arenosa/MO baixa, TS arenosa/MO média

baixa, TS arenosa/ MO média, TS arenosa/ MO alta, TS média/MO baixa, TS média/MO

média baixa, TS média/ MO média, TS média/ MO alta, TS argilosa/MO baixa, TS

argilosa/MO média baixa, TS argilosa/ MO média e TS argilosa/ MO alta. Como não houve a

ocorrência de horizontes que façam parte dos três últimos grupos da combinação citada,

apenas os nove primeiros grupos foram considerados na validação. Com isso, visando analisar

a eficiência do modelo em cada uma destas combinações possíveis, foram sorteados

préviamente, de forma aleatória, 9 horizontes para validação, sendo que cada horizonte esteja

em uma das combinações de textura e matéria orgânica citadas anteriormente.

A seguir, tem-se uma breve descrição dos horizontes sorteados para avaliação:

P103-AB profundidade de 19-36 cm; cores bruno-amarelado a bruno-amarelado-claro; textura

franco-arenosa (arenosa, na classificação simplificada);

P057-A profundidade de 0-13 cm de profundidade; cores cinzento a e cinzento-claro; textura

franco-arenosa (arenosa, na classificação simplificada);

P051-A profundidade de 0-7 cm; cor amarelo-avermelhado; textura franca (arenosa, na classi-

ficação simplificada);

P058-A profundidade de 0-5 cm; cor bruno (parda); textura areia-franca (arenosa, na classifi-

cação simplificada);
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P049-AB profundidade de 4-16 cm; cor bruno-amarelado; textura franco-siltosa (média, na

classificação simplificada);

P061-AB profundidade de 7-32 cm; cor bruno-avermelhado; textura franco-argiloarenosa (mé-

dia, na classificação simplificada);

P049-A profundidade de 0-4 cm; cor Bruno-amarelado-escuro; textura franca (média, na clas-

sificação simplificada);

P106-A profundidade de 0-7 cm; cor bruno-amarelado-escuro; textura franco-arenosa (média,

na classificação simplificada);

P055-AB profundidade de 10-39 cm; cor bruno; textura argiloarenosa (argilosa, na classifica-

ção simplificada).

As tabelas 5.1 a 5.9 mostram os resultados de validação do sistema de inferência fuzzy

proposto em relação aos dados de Petrobras (2010). Como o objetivo é verificar se a matéria

orgânica pode melhorar os resultados da modelagem, os resultados também foram comparados

aos resultados do sistema de inferência proposto por Belleza (2014). Os erros considerados

foram absolutos, comumente utilizados em trabalhos na área de solos. Entretanto, no ambiente

da matemática aplicada e da modelagem matemática e computacional deve ser considerado o

erro relativo, que representa de forma mais significativa o erro cometido independentemente

das grandezas envolvidas. Os erros relativos serão analisados por valores de potencial

matricial ao final deste capítulo.

Tabela 5.1: Estimativas e comparações para o perfil P103-AB, com 13% de argila e 7,9 g/kg de
matéria orgânica.

Pot. Matricial
(atm)

Umidade real
(cm3.cm−3)

Novo Modelo Belleza (2014)
Estimado Erro Abs. Estimado Erro Abs.

0 0,488 0,464 2,42% 0,486 0,22%
0,1 0,406 0,405 0,08% 0,42 1,42%
0,3 0,326 0,332 0,57% 0,331 0,47%
0,6 0,276 0,332 5,61% 0,331 5,51%
1 0,168 0,166 0,23% 0,118 5,03%
3 0,168 0,167 0,10% 0,117 5,10%
4 0,163 0,167 0,35% 0,117 4,65%
5 0,163 0,167 0,45% 0,12 4,25%

Média dos Erros 1,23% 3,33%

O perfil P103-AB (tabela 5.1) foi o que apresentou menor média de erro absoluto dentre os

perfis de validação, tendo uma redução de 2,11 pontos percentuais de Erro Absoluto Médio
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Figura 5.1: Curvas de retenção para o perfil P103-AB.

(EAM) com o modelo de Belleza (2014). O maior erro absoluto foi verificado para um

potencial de 0,6 atm, e justifica-se pelo fato de o valor real de umidade estar muito próximo do

limite inferior do intervalo de domínio do conjunto fuzzy considerado como resposta na regra

em que se encaixa o perfil. Como o método de defuzzificação adotado é o de centro de

gravidade o valor de saída se encontra próximo do centro do intervalo de domínio do conjunto

fuzzy, como visto na figura 4.9 do capítulo anterior, e isto justifica uma margem de erro para o

valor estimado. A figura 5.1 ilustra as curvas de retenção dos dois modelos em comparação

aos dados coletados.

Tabela 5.2: Estimativas e comparações para o perfil P057-A, com 2% de argila e 11 g/kg de
matéria orgânica.

Pot. Matricial
(atm)

Umidade real
(cm3.cm−3)

Novo Modelo Belleza (2014)
Estimado Erro Abs. Estimado Erro Abs.

0 0,494 0,469 2,49% 0,48 1,39%
0,1 0,404 0,405 0,06% 0,42 1,56%
0,3 0,334 0,331 0,28% 0,332 0,18%
0,6 0,297 0,33 3,28% 0,332 3,48%
1 0,210 0,201 0,91% 0,118 9,21%
3 0,196 0,207 1,08% 0,116 8,02%
4 0,193 0,209 1,56% 0,114 7,94%
5 0,191 0,205 1,39% 0,12 7,11%

Média dos Erros 1,38% 4,86%

A resposta do modelo para o perfil P057-A, detalhada na tabela 5.2, foi bastante significativa

para os valores de potencial matricial a partir de 0,6 atm, se comparado com o trabalho

anterior. Apenas no potencial de 0 atm, assim como ocorreu com o perfil P103-AB, este
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Figura 5.2: Curvas de retenção para o perfil P057-A.

modelo novo apresentou erro maior que o modelo comparado. Houve uma diminuição de 3,48

pontos percentuais de EAM, que implica uma redução de 71,6% de EAM. A figura 5.2 ilustra

as curvas de retenção para este perfil, indicando uma melhora acentuada nas estimativas pelo

novo modelo a partir de 1 atm de potencial matricial.

Tabela 5.3: Estimativas e comparações para o perfil P051-A, com 13% de argila e 16 g/kg de
matéria orgânica.

Pot. Matricial
(atm)

Umidade real
(cm3.cm−3)

Novo Modelo Belleza (2014)
Estimado Erro Abs. Estimado Erro Abs.

0 0,539 0,508 3,07% 0,486 5,27%
0,1 0,452 0,441 1,11% 0,42 3,21%
0,3 0,389 0,37 1,93% 0,331 5,83%
0,6 0,352 0,37 1,79% 0,331 2,11%
1 0,274 0,246 2,78% 0,118 15,58%
3 0,261 0,252 0,85% 0,117 14,35%
4 0,258 0,252 0,61% 0,117 14,11%
5 0,241 0,251 1,02% 0,12 12,08%

Média dos Erros 1,65% 9,07%

Para o perfil P051-A, o resultado do modelo proposto (tabela 5.3) foi o que apresentou maior

diminuição de EAM, 7,42 pontos percentuais, ou seja, uma redução de 81,8% de erro. A partir

de um potencial de 1 atm, o modelo apresentou resultados bem melhores que o modelo

comparado. A figura 5.3 ilustra as curvas de retenção para este perfil.

Comparando com o modelo de Belleza (2014), o perfil P058-A apresentou uma diminuição de

EAM de 4,81 pontos percentuais, tendo um erro absoluto maior apenas para os potenciais de 0

e 0,1 atm, conforme consta na tabela 5.4. O erro de 4,77% verificado para o primeiro valor de
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Figura 5.3: Curvas de retenção para o perfil P051-A.

Tabela 5.4: Estimativas e comparações para o perfil P058-A, com 6% de argila e 20,4 g/kg de
matéria orgânica.

Pot. Matricial
(atm)

Umidade real
(cm3.cm−3)

Novo Modelo Belleza (2014)
Estimado Erro Abs. Estimado Erro Abs.

0 0,488 0,536 4,77% 0,482 0,63%
0,1 0,411 0,426 1,48% 0,42 0,88%
0,3 0,340 0,346 0,59% 0,332 0,81%
0,6 0,353 0,345 0,82% 0,332 2,12%
1 0,235 0,245 1,03% 0,118 11,67%
3 0,232 0,234 0,17% 0,116 11,63%
4 0,223 0,232 0,89% 0,114 10,91%
5 0,227 0,239 1,16% 0,12 10,74%

Média dos Erros 1,36% 6,17%

Figura 5.4: Curvas de retenção para o perfil P058-A.
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potencial pode ser justificado pelo fato de o valor real de umidade estar fora da faixa

considerada como resposta para a regra ativada por este perfil. As regras ativadas pelo conjunto

de valores das variáveis de entrada deste perfil, juntamente com o valor de potencial de 0 atm,

foram as regras R15 e R22, que consideram a saída de umidade U7, ou seja, estando no

intervalo real [0.49, 0.588]. Porém, o valor observado para este caso foi de 0,488 atm, que está

fora do intervalo de saída para a estimativa, ratificando a justificativa do erro elevado discutido.

A figura 5.4 ilustra as curvas de retenção para este perfil de acordo com os dois modelos.

Tabela 5.5: Estimativas e comparações para o perfil P049-AB, com 17% de argila e 7,8 g/kg de
matéria orgânica.

Pot. Matricial
(atm)

Umidade real
(cm3.cm−3)

Novo Modelo Belleza (2014)
Estimado Erro Abs. Estimado Erro Abs.

0 0,437 0,462 2,47% 0,454 1,67%
0,1 0,397 0,404 0,72% 0,396 0,08%
0,3 0,366 0,333 3,33% 0,33 3,63%
0,6 0,372 0,333 3,90% 0,33 4,20%
1 0,265 0,224 4,12% 0,197 6,82%
3 0,263 0,224 3,92% 0,197 6,62%
4 0,255 0,224 3,06% 0,197 5,76%
5 0,254 0,224 2,99% 0,15 10,39%

Média dos Erros 3,06% 4,90%

Figura 5.5: Curvas de retenção para o perfil P049-AB.

O perfil P049-AB foi o que apresentou maior EAM para o modelo proposto, tendo, ainda

assim, uma diminuição de 1,83 pontos percentuais de EAM em relação ao modelo comparado,

verificado na tabela 5.5. A justificativa para os valores altos de erro absoluto neste perfil está

na ativação de mais de uma regra por ele e, estas duas regras possuem saídas bastante distintas.
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Como o valor de textura (17% de argila) se enquadra tanto na classe arenosa (T1) quanto

média (T2), as regras ativadas para determinar a saída são sempre duas. O valor de matéria

orgânica deste perfil se enquadra na classe baixa (MO1). Verificando na tabela 4.5, no capítulo

anterior, de 0 a 0,6 atm o resultado das regras ativadas são os mesmos. Porém, de 1 a 5 atm as

regras ativadas em cada potencial são diferentes: para 1 atm (P5) são ativadas as saídas de

umidade U1 e U3, repetindo este fato para o valores de potencial 3 (P6), 4 (P6) e 5 (P7) atm.

Com a combinação dos números fuzzy U1 e U3 na saída pela inferência de Mamdani e a

defuzzificação pelo centro de gravidade, o valor estimado será dado por um valor que está

situado no fim ou no início dos intervalos U1 e U3, respectivamente, considerando o centro da

área dessa região formada. O valor verificado, em todos os valores de potencial a partir de 1

atm, são iguais a 0,224 cm3/cm3, distante dos valores observados que, na totalidade, possuem

grau de pertinência maior a classe de umidade U3. A figura 5.5 ilustra as curvas de retenção

para este perfil.

Tabela 5.6: Estimativas e comparações para o perfil P061-AB, com 30% de argila e 11,2 g/kg
de matéria orgânica.

Pot. Matricial
(atm)

Umidade real
(cm3.cm−3)

Novo Modelo Belleza (2014)
Estimado Erro Abs. Estimado Erro Abs.

0 0,456 0,466 1,02% 0,42 3,58%
0,1 0,431 0,405 2,57% 0,371 5,97%
0,3 0,416 0,405 1,05% 0,332 8,35%
0,6 0,422 0,405 1,70% 0,332 9,00%
1 0,363 0,333 3,03% 0,269 9,43%
3 0,351 0,331 2,00% 0,268 8,30%
4 0,343 0,331 1,19% 0,268 7,49%
5 0,330 0,267 6,33% 0,2 13,03%

Média dos Erros 2,36% 8,14%

O perfil P061-AB, conforme a tabela 5.6, apresentou melhores resultados pelo modelo

proposto, em comparação com o modelo anterior. Houve uma diminuição de 5,78 pontos

percentuais de EAM. O valor alto de erro para o potencial de 5 atm, 6,33%, se justifica pelo

fato de o valor de umidade real, para este perfil sorteado, estar fora da faixa considerada para a

regra. A faixa de umidade considerada pela regra ativada (R42) pelas variáveis de entrada deste

perfil sob o potencial de 5 atm é U3, cujo domínio está no intervalo [0.219, 0.312], que não

abrange o valor observado para o potencial citado. De acordo com a figura 5.6, os valores

estimados pelos dois modelos para este perfil ficaram abaixo do esperado para a maioria dos

valores de potencial matricial.

Para o perfil P049-A, o modelo apresentou pouca diferença na melhora de estimativa de
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Figura 5.6: Curvas de retenção para o perfil P061-AB.

Tabela 5.7: Estimativas e comparações para o perfil P049-A, com 17% de argila e 18,7 g/kg de
matéria orgânica.

Pot. Matricial
(atm)

Umidade real
(cm3.cm−3)

Novo Modelo Belleza (2014)
Estimado Erro Abs. Estimado Erro Abs.

0 0,569 0,539 2,96% 0,454 11,46%
0,1 0,396 0,429 3,32% 0,396 0,02%
0,3 0,337 0,356 1,90% 0,33 0,70%
0,6 0,347 0,356 0,93% 0,33 1,67%
1 0,228 0,25 2,23% 0,197 3,07%
3 0,226 0,25 2,42% 0,197 2,88%
4 0,216 0,25 3,39% 0,197 1,91%
5 0,214 0,25 3,61% 0,15 6,39%

Média dos Erros 2,59% 3,51%

Figura 5.7: Curvas de retenção para o perfil P049-A.
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umidade em comparação com o modelo de Belleza (2014), conforme mostra a tabela 5.7.

Verificando o gráfico 5.7, pode-se perceber que o modelo proposto, em geral, superestimou os

valores de umidade, enquanto que o modelo anterior comparado subestimou-os. Este fato tem

relação com a inclusão da matéria orgânica. No modelo proposto, espera-se que a matéria

orgânica facilite os processos de retenção de água no solo, levando a valores altos de umidade

retida conforme verificado nos resultados estimados. Isto já não acontece no modelo

comparado, que não considera a influência de matéria orgânica e, por isto, tem seus valores de

umidade subestimados para perfis que possuam valores altos de matéria orgânica.

Tabela 5.8: Estimativas e comparações para o perfil P106-A, com 15% de argila e 22,8 g/kg de
matéria orgânica.

Pot. Matricial
(atm)

Umidade real
(cm3.cm−3)

Novo Modelo Belleza (2014)
Estimado Erro Abs. Estimado Erro Abs.

0 0,560 0,538 2,21% 0,488 7,21%
0,1 0,427 0,404 2,33% 0,42 0,73%
0,3 0,344 0,332 1,21% 0,33 1,41%
0,6 0,296 0,332 3,58% 0,33 3,38%
1 0,206 0,215 0,91% 0,118 8,79%
3 0,203 0,215 1,24% 0,118 8,46%
4 0,198 0,215 1,75% 0,118 7,95%
5 0,196 0,215 1,95% 0,12 7,55%

Média dos Erros 1,90% 5,69%

Figura 5.8: Curvas de retenção para o perfil P106-A.

Pelo gráfico 5.8 e tabela 5.8 verifica-se que, mesmo com um EAM de 1,9%, o novo modelo

proposto ajusta de forma mais satisfatória os valores de umidade para o perfil P106-A.
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Tabela 5.9: Estimativas e comparações para o perfil P055-AB, com 36% de argila e 10,6 g/kg
de matéria orgânica.

Pot. Matricial
(atm)

Umidade real
(cm3.cm−3)

Novo Modelo Belleza (2014)
Estimado Erro Abs. Estimado Erro Abs.

0 0,458 0,462 0,42% 0,42 3,78%
0,1 0,432 0,404 2,85% 0,42 1,25%
0,3 0,370 0,404 3,45% 0,37 0,05%
0,6 0,379 0,363 1,64% 0,37 0,94%
1 0,287 0,266 2,08% 0,37 8,32%
3 0,285 0,266 1,94% 0,33 4,46%
4 0,279 0,266 1,26% 0,33 5,14%
5 0,272 0,266 0,65% 0,33 5,75%

Média dos Erros 1,79% 3,71%

Figura 5.9: Curvas de retenção para o perfil P055-AB.
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Por fim, o perfil P055-AB obteve uma diminuição de EAM de 1,92 pontos percentuais, sendo

insatisfatório somente para os valores 0,1 e 0,3 atm de potencial. A tabela 5.9 detalha os

valores de estimativas e os erros para os dois modelos, e a figura 5.9 ilustra as curvas de

retenção para este perfil.

Em geral, como se pode observar no gráfico 5.10, o novo sistema de inferência, considerando o

teor de matéria orgânica presente no solo, obteve melhores resultados segundo os EAMs.

Apenas no potencial matricial 0,1 atm a diferença de EAMs foi pequena, porém com um valor

médio menor que o controlador comparado.

O maior EAM por potencial matricial verificado foi de 2,58% e dos 8 pontos de potencial

matricial, 5 obtiveram EAM abaixo de 2%, valor considerado aceitável.

Figura 5.10: Erros absolutos médios totais por valores de potencial matricial.

O erro absoluto médio total verificado para o modelo nos perfis de validação é de 1,92%,

estando abaixo do limite aceitável de 2% para métodos indiretos de determinação de umidade

do solo (GARDNER, 1986, apud BELLEZA, 2014). Dos 9 perfis sorteados para validação do

modelo, 6 possuem erro absoluto médio abaixo de 2% e, dos 72 resultados verificados em

todos os perfis de validação, 58,3% possuem erro absoluto menor que 2%.

O gráfico 5.11 mostra que apesar de o modelo apresentar erros relativos médios por potencial

relativamente altos, as estimativas foram melhores em comparação ao modelo apresentado

anteriormente por Belleza (2014), sobretudo para valores de potenciais acima de 0,6 atm.
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Figura 5.11: Erros relativos médios totais por valores de potencial matricial.
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6 Conclusão

A escolha da teoria de lógica fuzzy, através de um sistema de inferência fuzzy, para obtenção

dos valores de umidade volumétrica do solo mostra-se bastante eficaz. A modelagem de

fenômenos deste tipo deve levar em conta as incertezas que os cercam, o que a lógica fuzzy

trata de forma eficiente. Também, serve como um auxílio a metodologias empíricas, sem

substituí-las, disponibilizando um método de cálculo simples e rápido quando os dados são

imprecisos ou provenientes de cálculos complicados.

A inclusão do teor de matéria orgânica no modelo fuzzy permite uma melhora na média de

erros absolutos total, comparado com o trabalho de Belleza (2014), o qual baseou seu modelo

apenas nos dados de textura e potencial matricial. Esta melhora, de aproximadamente 64%, é

baseada nos perfis considerados para validação do modelo, e está de acordo com as hipóteses

assumidas entre a relação de matéria orgânica e a retenção de umidade.

De acordo com o modelo e os dados de validação, nada se pode concluir sobre a influência da

matéria orgânica em solos de textura argilosa (mais de 35% de argila), visto que apenas um

único horizonte, de todos os dados, se encaixa neste perfil. Entretanto, solos argilosos tendem

a reter, por questões já discutidas, mais umidade, diminuindo a influência da matéria orgânica

nesta classe de textura. Ainda, é observado uma melhora das predições da umidade com a

adição da matéria orgânica em valores de potencial matricial alto. Isto se deve ao fato de a

matéria orgânica aumentar a superfície específica do solo.

O erro absoluto médio total verificado para o modelo é bom, considerando que possam existir

imprecisões nas medições dos valores dos parâmetros do conjunto de dados adotado. Mesmo

que pouco mais da metade das estimativas esteja abaixo do limite de erro absoluto aceitável de

2% (GARDNER, 1986), este modelo é considerado adequado, levando em conta as incertezas

do fenômeno e o objetivo de se construir um método simples e rápido de prever dados de

umidade do solo.

O fato de o modelo superestimar a maioria dos valores de umidade é, em prática, benéfico

considerando o problema de estudo de erosão do solo da região em que os dados foram

adotados. Um dos objetivos dos estudos em Petrobras (2010) é elaborar uma estratégia de
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rotas para veículos, logo, ao superestimar o valor de umidade que o solo considerado consegue

reter aumenta-se a margem de segurança da escolha da rota a ser tomada.

Os resultados deste modelo levam em consideração dados de solo da região amazônica e, por

isso, este sistema de inferência não deve ser transferido para dados de outras regiões, mas sim

adaptado. Os parâmetros do sistema de inferência fuzzy são os conjuntos fuzzy representantes

das variáveis de entrada e saída, bem como o quadro de regras, que devem ser verificados em

cada região que se queira reproduzir o método.

Com o intuito de aperfeiçoar os valores de estimativas para a umidade do solo, diminuindo

assim os erros de saída, aconselha-se analisar um conjunto maior de dados para a construção

dos conjuntos fuzzy e da base de regras do sistema. Como os dados de coleta estão,

naturalmente, sujeitos a erros de medição, devido a imprecisões tanto do fenômeno quanto da

medição por parte humana, um número maior de dados permite uma margem de erro menor.

Como sugestão de continuidade deste estudo é indicada uma nova análise de fuzzificação dos

parâmetros envolvidos. Isto pode ser feito com a utilização de algoritmos genéticos, por

exemplo, para otimizar os conjuntos fuzzy. Ainda, a construção da base de regras do sistema de

inferência pode ser feita com a utilização do método de Wang-Mendel (WANG & MENDEL,

1992), que é um método de treinamento do sistema fuzzy, gerando regras automaticamente.

Por fim, é importante salientar que cada região possui um conjunto de dados específico para as

características de solo e as relações existentes com a retenção de umidade. A metodologia

apresentada neste trabalho pode ser reproduzida, e inclusive aperfeiçoada, para a obtenção de

resultados em outras regiões, visto que a problemática do uso racional da água se torna um

fator mais importante a cada ano.
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ANEXO A -- Dados de solos analisados

Tabela A.1: Dados de horizontes analisados de Petrobras
(2010).

Perfil Horizonte Textura (% argila) Mat. Orgânica (g/kg)
031 A 13% 21,5
031 AB 16% 7,8
035 A 18% 14,4
035 AB 26% 10,2
037 A 15% 10,9
037 AB 22% 7,8
039 A 13% 17,3
045 A 6% 8,1
049 A 17% 18,7
049 AB 17% 7,8
051 A 13% 16
051 AC 12% 12
054 A 18% 13,6
054 AB 22% 7,7
055 A 32% 13,4
055 AB 36% 10,6

057B A 2% 11
057B AB 5% 6,5
058 A 6% 20,4
058 AB 16% 10,5
060 A 22% 21,1
060 AB 24% 11,2
061 A 27% 21,1
061 AB 30% 11,2
065 A 32% 60,30
065 AB 37% 11,20
068 A1 7% 11,40
068 A2 3% 6,60
068 AE 2% 4,90
069 A 15% 14,20
069 AB 15% 6,80

continua na próxima página
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Tabela A.1 - - continuação da página anterior
Perfil Horizonte Textura (% argila) Mat. Orgânica (g/kg)
070 A 27% 20,20
070 AB 31% 10,00
074 A 5% 16,20
074 AB 19% 8,30
075 A 18% 11,50
075 AB 25% 7,50
078 A 19% 14,20
078 AB 24% 9,10
079 A 6% 29,60
079 AB 20% 10,10
080 A 22% 8,40
086 A 15% 9,60
086 AB 24% 7,40
088 A 3% 18,00
088 AC 9% 6,50
090 A 14% 6,00
090 AB 15% 3,00
094 A 14% 15,60
094 AB 23% 8,00
095 A 29% 25,00
095 AB 29% 15,00
096 A 21% 19,60
096 AB 25% 14,40
099 A 12% 19,20
099 AB 12% 9,00
101 A 11% 14,40
101 AB 12% 10,70
103 A 10% 8,20
103 AB 13% 7,90
105 A 15% 10,00
105 AB 16% 9,30
106 A 15% 22,80
106 AB 18% 9,60
108 A 16% 10,20
108 AB 19% 8,40
110 A 9% 15,10
110 AB 10% 10,20
123 A 12% 11,22
123 AB 13% 10,32
136 A 25% 22,20
136 AB 25% 16,56
139 A 16% 8,20
139 AB 21% 7,20
143 A 14% 15,00
143 AB 14% 7,70

continua na próxima página
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Tabela A.1 - - continuação da página anterior
Perfil Horizonte Textura (% argila) Mat. Orgânica (g/kg)
150 A 16% 18,40
150 AB 19% 9,80
158 A 5% 13,80
158 AB 25% 10,80


