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RESUMO GERAL

GELSLEICHTER, Yuri Andrei. Predição e mapeamento de propriedades de solos no Par­
que Nacional de Itatiaia com sensoriamento remoto proximal e imagens orbitais hiperes­
pectrais. 2020. 89f. Tese (Doutorado em Ciência, Tecnologia e Inovação em Agropecuária).
Pró­Reitoria de Pesquisa e Pós­Graduação, Universidade Federal Rural do Rio de Janeiro, Se­
ropédica, RJ, 2020.

O Parque Nacional de Itatiaia (INP, do inglês para Itatiaia National Park) fica localizado ao sul
do estado do Rio de Janeiro, com o estudo realizado na Parte Alta do Parque, definida acima
de 2000 msnm. Os objetivos do primeiro capítulo foram: (i) investigar a capacidade de pre­
dizer propriedades do solo (Al, Ca, K, Mg, Na, P, pH, Carbono Total (TC Total Carbon), H
e N), utilizando os comprimentos de onda 350–2500 nm; e (ii) investigar e desenvolver pré­
processamentos espectrais para uso e comparação em algoritmos de aprendizado de máquina,
como Redes Neurais Artificiais (ANN, Artificial Neural Networks), Random Forest (RF), Re­
gressão de Mínimos Quadrados Parciais (PLSR, Partial Least Squares Regression) e Cubist
(CB). Foram coletadas amostras de solo, por horizontes, em 84 perfis de solo, compondo um
total de 300 amostras. A validação cruzada aplicada para avaliar os modelos foi do tipo k­fold.
O melhor pré­processamento espectral foi o Inverso da Reflectância de Fator 104 (IRF4) para
TC com CB que superou os métodos comumente utilizados, com coeficiente de determinação
(R2) médio de 0,85, RMSE de 1,96 para TC; e 0,67 com 0,041, respectivamente, para H. Para
o mapeamento do TC nos solos do INP foram utilizadas três cenas de imagens hiperespectrais
do sensor Compact High Resolution Imager (CHRIS) do satélite (plataforma espacial) Project
for On Board Autonomy (PROBA). Este sensor conta com 62 bandas espectrais no intervalo
dos comprimentos de onda 406 a 1019 nm (referente as bordas da primeira e última bandas res­
pectivamente). As imagens foram corrigidas quanto a ruídos, striping, distorções geométricas
e interferências atmosféricas. A predição de TC foi feita usando essas imagens e associando
covariáveis de relevo e imagens do sensor orbital RapidEye, obtendo R2 de 0,33. Utilizando­se
apenas a cena RapidEye mais as covariáveis de terreno o R2 foi de 0,32. Essas imagens foram
combinadas aos espectros proximais obtidos na primeira camada do solo, dos 84 perfis, para
produzir imagens de refletância de solo de toda parte alta do INP. Essa técnica foi chamada de
imageamento espectral de subsuperfície. A aplicação deste produto no Mapeamento Digital de
Solos aumentou significativamente a predição de TC, com R2 de 0,58, com incremento de 75%
em relação ao Mapeamento Digital de Solos convencional. Essa técnica inovadora, apresentada
pela primeira vez neste estudo, é denominada Mapeamento Hiperespectral de Solos (HSM, em
inglês Hyperspecrtal Soil Mapping), sendo o desenvolvimento desta técnica o objetivo princi­
pal do segundo capítulo. Essa técnica pode isolar o efeito de interferência atmosférica e efeitos
de cobertura de solo e vegetação sobre a reflectância do solo. Pelo aumento da capacidade de
predição do HSM, pode­se reduzir a quantidade amostral do levantamento pedológico, alcan­
çando assim resultado equivalente ao Mapeamento Digital do Solos. O HSM é ideal para áreas
com acesso e locomoção muito restritos, como o INP, mas também pode ser aplicado para o
mapeamento de atributos de solo, fins agrícolas e monitoramento ambiental.

Palavras­chave: Covariáveis espectrais. Predição espectral de solos. Mapa hiperespectral.



GENERAL ABSTRACT

GELSLEICHTER, Yuri Andrei. Predicting and mapping soil properties in Itatiaia National
Park with proximal remote sensing and hyperspectral orbital images. 2020. 89p. The­
sis (Doctorate in Science, Technology and Innovation in Agriculture). Pró­Reitoria de Pesquisa
e Pós­Graduação, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.

The Itatiaia National Park (INP) is located Southern of Rio de Janeiro State, in the boundary
with Minas Gerais and São Paulo states, Southeast region of Brazil. This study was carried out
in the Upper Part of the INP, defined above the 2000 msnm. The objectives of the first chapter
of this study were: (i) to investigate the ability to predict soil properties (Al, Ca, K, Mg, Na, P,
pH, Total Carbon (TC), H and N), using wavelengths 350–2500 nm; and (ii) to investigate and
develop spectral preprocessing for usage and comparison in machine learning algorithms, such
as Artificial Neural Networks (ANN), Random Forest (RF), Partial Least Squares Regression
(PLSR) and Cubist (CB). In the Upper Part of the INP soil samples were collected from the
horizons of 84 soil profiles, composing a total of 300 samples. The cross­validation method
used to evaluate the models was the k­fold type. The best spectral preprocessing was the Inverse
of Reflectance to Factor of 104 (IRF4) for TC with CB. IRF4 surpassed the common methods
used for preprocessing, with an average coefficient of determination (R2) of 0.85, RMSE of 1.96
for TC; and 0.67 with 0.041, respectively, for H. The results pointed out IRF4 as one of the best
preprocessing associated with the RF and CB algorithms. To map the TC in the INP soils, there
were used three scenes of Hyperspectral images from the Compact High­Resolution Imager
(CHRIS) sensor from space platform Project for On Board Autonomy (PROBA), a satellite of
the European Spatial Agency (ESA). This sensor contains 62 spectral bands in the wavelengths
interval of 406 to 1019 nm (as reference, the edge of the first and last bands respectively). The
images were corrected for noise, striping, geometric distortions and atmospheric interferences.
The TC prediction was made using these images and associating relief covariates and images
from the RapidEye orbital sensor, obtaining R2 of 0.33. Using only the RapidEye scene plus
the terrain covariates the R2 was 0.32. These images were combined with the proximal spectra
obtained in the top soil layer, of the 84 profiles, to produce soil reflectance images of INP Upper
Part. This technique was called Subsurface spectral imaging, with the application of this product
in Digital Soil Mapping the TC prediction increased significantly, with R2 0.58, showing an
increase of 75% in relation to the conventional Digital Soil Mapping. This innovative technique
is presented for the first time in this study, and is called Hyperspectral Soil Mapping (HSM).
The development of this technique was the main objective of the second chapter. The spectral
preprocessing image (in HSM) can isolate the effect of atmospheric interference and effects of
the land cover and vegetation on the soil reflectance. Thus, by increasing the predictive capacity
of the HSM, the sample size of the pedological survey can be reduced, having a result equivalent
to the Digital Soil Mapping. In addition to reducing the cost of taking samples, this technique is
ideal for areas with very restricted access and locomotion, as the case of INP, but it can also be
applied for mapping of various soil properties, agricultural purposes and remote environmental
monitoring.

Keywords: Spectral covariates. Spectral prediction of soils. Hyperspectral map.



RESUMEN AMPLIADO

GELSLEICHTER, Yuri Andrei. Predicción y cartografía de las propiedades del suelo en
el Parque Nacional de Itatiaia con imágenes orbitales hiperespectrales y de teledetección
proximal. 2020. 89p. Tesis (Doctorado en Ciencia, Tecnología e Innovación en Agricul­
tura). Pró­Reitoria de Pesquisa e Pós­Graduação, Universidade Federal Rural do Rio de Janeiro,
Seropédica, RJ, 2020.

1 Introducción
Las técnicas para cuantificar las propiedades químicas del suelo se basan en la titulación

(química húmeda). El desarrollo de sensores y procesos computacionales para respaldar méto­
dos más rápidos y limpios está en desarrollo continuo. Las técnicas de Teledetección (RS) como
la Detección Proximal del Suelo (PSS) actualmente son aplicables a ciertas propiedades. Los
métodos de procesamiento de datos espectrales permiten aumentar la capacidad de predecir las
propiedades del suelo. Existe una amplia gama de algoritmos para probar y pueden funcionar
de manera diferente según el preprocesamiento espectral.

En términos de Mapeo Digital de Suelos (DSM), hay una falta de uso/integración con
PSS. En el segundo capítulo, exploramos la integración de PSS para DSM utilizando una téc­
nica que denominamos Imagen de subsuperficie para promover lo que denominamos Mapeo de
suelos hiperespectrales.

2 Material y Métodos
Este estudio se realizó en la Parte Alta dell Parque Nacional de Itatiaia (INP), que se

encuentra por encima de los 2000 msnm. Es una región montañosa ubicada al sur del estado de
Río de Janeiro, en el límite con los estados de Minas Gerais y São Paulo. Debido al reducido
impacto de la agricultura de las últimas décadas, y como unidad de conservación, el INP es un
área de referencia para los estudios ambientales.

Capítulo I
Se aplicó el RS como Proximal Soil Sensing (PSS) (350 a 2500 nm) para explorar los

tratamientos espectrales para predecir las seguintes propiedades del suelo: aluminio (Al), cal­
cio (Ca), potasio (K), magnesio (Mg), sodio (Na ), fósforo (P), más pH, carbono total (TC),
hidrógeno (H) y nitrógeno (N), con los algoritmos: Artificial Neural Network (ANN), Random
Forest (RF), Partial Least Squares Regression (PLSR) y Cubist (CB).

Los principales preprocesos espectrales son Continuum Removal (CR) (CLARK, 1999),
Savitzky–Golay (SVG) (SAVITZKY; GOLAY, 1964) con diferentes configuraciones en la
derivada, orden del polinomio y la ventana de búsqueda (VASQUES et al., 2008) e Inversa
de reflectancia para Factor de 104 (IRF4). El IRF4 se obtuvo dividiendo 10.000 por cada valor
del espectro de reflectancia. También se incluyó como preprocesamiento una conversión de
datos espectrales a absorbancia mediante ­log10 (reflectancia) (ROSSEL et al., 2005) (AB­log).
La forma de las principales curvas de preprocesamiento se puede observar en la Figura 1.



Figura 1: Visualización de las principales curvas de preprocesamiento espectral: (A) Elimi­
nación de continuo (purpura); sin tratamiento (espectro sin procesar) (verde); absorban­
cia (rojo); Inverso de la reflectancia al factor de 104 (verde claro). (B) primera derivada
de Savitzky­Golay (azul oscuro); Inversa de la reflectancia al factor de 104 + primera
derivada de Savitzky­Golay (azul claro); Primera derivada de Savitzky­Golay + Inverso
de reflectancia al factor de 104 (marrón); Inverso de la reflectancia al factor de 104 (verde
claro). Observe que cada curva se ajusta a su propia escala y (reflectancia).

Capítulo II
Para saber si la cantidad puntos en el INP estaba suficiente se analizó la dependencia

espacial con un semivariograma (Figura 2).
Para realizar la integración entre DSM y PSS utilizamos los valores de PSS del sensor

ASD Fieldspec 4 (de muestras de suelo superior), imágenes del sensor Multiespectral RapidEye
con 5 bandas y el Hyperspectral one CHRIS con 62 bandas. La imagen de CHRIS tuvo que
ajustarse cuidadosamente para poder usarla. Los tratamientos consistieron en una corrección
geométrica y una atmosférica, ajuste en tamaño de píxel, en intensidad de reflectancia entre las
diferentes imágenes y tratamiento de sombras.

La integración de DSM y PSS se calcula con el enfoque DSM, pero en lugar de predecir
una propiedad del suelo, se predice un valor de una banda de PSS. La salida es una imagen
de una banda de PSS, se repitió el proceso llamado Imagen de Subsuperficie para generar 100
imágenes a partir de las longitudes de onda de PSS elegidas. La imagen de subsuperficie (Figura
3) se ejecuta el proceso de mapeo digital, llamado Mapeo Hiperespectral del Suelo (Figura 4).

La integración de DSM y PSS se calcula con el enfoque DSM, pero en lugar de predecir
una propiedad del suelo, predice un valor de una banda de PSS.

Figura 2: Semivariograma de TC en INP con
modelo esférico. Figura 3: Imagen de subsuperficie de la parte

Alta del INP.
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Figura 4: Proceso de subsuperficie, los procesos de Mapeo Hiperespectral de Suelos (HSM).

3 Resultados

Capítulo I
Para evaluar el desempeño de los modelos predictivos, se calcularan el error cuadrático

medio (RMSE), el coeficiente de determinación (R2) y la relación de desempeño a desviación
(RPD). El mejor modelo asociado con el mejor preprocesamiento, fue el CB para TC con R2 de
0,85, RPD de 2,87 (el más alto), seguido por PLSR para N con R2 de 0,82 y RPD de 2,65, y RF
para Al con R2 de 0,54 y RPD de 1,54 (Tabla 1 y Figura 5).

Tabla 1: Los mejores preprocesamients con los modelos asociados para cada propiedad de los
suelos muestreados en el INP.
Preprocessing Model Soil property* R2 MSE RMSE bias RPD
IRF4 + SVG­1­2­11 + NR 434 rf Al 0.536 0.944 0.954 0.037 1.541
IRF4 cb H 0.672 0.173 0.411 ­0.034 1.817
SVG­1­2­11 + IRF4 + NR 434 rf K 0.275 0.017 0.118 0.003 1.244
SVG­1­2­11 rf Mg 0.194 0.074 0.267 0.014 1.148
IRF4 + NR 434 plsr N 0.819 0.018 0.13 ­0.005 2.649
SVG­1­2­11 + IRF4 + NR 434 rf P 0.072 66.896 7.436 0.137 1.07
SVG­1­2­11 rf pH 0.363 0.096 0.309 ­0.005 1.286
IRF4 cb TC 0.852 3.998 1.958 ­0.044 2.867
*Ca y Na no se muestran en la tabla debido a no satisfactorios resultados. La descripción de cada
preprocesamiento está de acuerdo con Tabla* 2.1; rf: bosque aleatorio; cb: cubista; plsr: Regresión
de mínimos cuadrados parciales; TC: carbono total; R2: coeficiente de determinación; MSE: error
cuadrático medio; RMSE: raíz del error cuadrada medio; RPD: relación entre rendimiento y desviación.
Las unidades de los coeficientes corresponden a Tabla* 2.2. (*Las Tablas mencionadas están en el texto
principal).

Figura 5: Relación entre los valores observados y predichos de N y TC.



Capítulo II
El DSM que usa RapidEye alcanza un R2 de 0,32 mientras que el HSM con la técnica de

imagen del subsuperficie, logra un R2 de 0,56, lo que proporciona un incremento del 75% en la
capacidad de predicción (Table 2). Estos resultados pueden ser apreciados en los mapas de las
Figuras 6a y 7a, en el primero de ellos, se observa una sobre estimación de los valores de TC,
mientras que, en el segundo de ellos, la predicción lograda mostró una mayor exactitud como
se visualiza en la Figura 7b. El rendimiento de CHRIS estuvo cerca del RapidEye con un ligero
incremento en la capacidad de predicción.

Tabla 2: Estadística descriptiva de la predicción espacial del TC en el INP sobre las covariables
utilizadas y la principal covariable explicativa.

Covariates groups R2 MSE RMSE bias Main cov.
RapidEye + Terrain + Geographic (Without CHRIS) 0.32 22.39 4.73 0.19 DEM
Subsurface CHRIS (bands 1:100) + RapidEye + Terrain + Geographic 0.57 14.13 3.76 0.09 band 53
Subsurface RapidEye (bands 1:100)+RapidEye+ Terrain+ Geographic 0.56 14.56 3.82 0.04 band 75
R2: coeficiente de determinación; MSE: Error cuadrático medio en (%) como TC; RMSE: raíz del error cuadrada
medio en (%) como TC; Covariable principal: covariable de mayor rango del correspondiente modelo de bosque
aleatorio. Banda 53 = 895 nm y banda 75 = 1480 nm.
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4 Conclusións
Considerando el carbono del suelo como indicador de la salud, calidad y degradación del

suelo, los resultados obtenidos a través de las técnicas de predicción de propiedades espectrales
del suelo aplicadas muestran un gran potencial para una rápida evaluación ambiental. En este
sentido, estas técnicas pueden contribuir a la gestión y seguimiento de la Parte Alta del Parque
Nacional de Itatiaia.

Capítulo I
Cada propiedad del suelo tiene el potencial de predicción incrementado por un preproce­

samiento espectral específico. Para TC, el IRF4 superó al preprocesamiento de uso común, in­
cluido SVG. Para algunos casos, como en la aplicación de CR para predecir TC e IRF4 (solo)
e para predecir N, el preprocesamiento disminuyó el potencial de predicción en comparación
con los espectros no tratados. El algoritmo más presente entre los valores pronosticados más
altos fue RF (5 de 8). La técnica IRF4 se introduce por primera vez en espectroscopia. Se
recomiendan más estudios para confirmar el potencial de la herramienta de preprocesamiento.

Capítulo II
Por el análisis del semivariograma se entiende que el empleo de 84 puntos de muestreo

de perfiles de suelo en el INP fue suficiente para realizar estudios de mapeo en el área. La com­
binación de PSS y DSM mediante el uso de imágenes subsuperficiales en HSM ha demostrado
ser muy eficiente para mapear las propiedades del suelo, en comparación con el proceso DSM
convencional. El HSM es la primera integración directa entre PSS y HSM.

Palabras clave:Covariables espectrales. Predicción espectral de suelos. Mapa hiperespectral.



EXTENDED ABSTRACT

GELSLEICHTER, Yuri Andrei. Predicting and mapping soil properties in Itatiaia National
Park with proximal remote sensing and hyperspectral orbital images. 2020. 89p. The­
sis (Doctorate in Science, Technology and Innovation in Agriculture). Pró­Reitoria de Pesquisa
e Pós­Graduação, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.

1 Introduction
The laboratory techniques to quantify chemical soil properties are normally based in the

titration (wet chemistry). The development of sensors and computational processes to support a
faster and cleaner methods are an ongoing development. Remote Sensing (RS) techniques such
as the Proximal Soil Sensing (PSS) are already applicable to certain soil properties, and methods
for preprocessing the spectral data can increase the capacity to predict these properties. There
is a large range of algorithms to test and they can perform different according to the spectral
preprocessing.

In terms of Digital Soil Mapping (DSM), there is a lack of use/integration with PSS. In
the second chapter we explore the integration of PSS for DSM using a technique that we named
as subsurfacing image to obtain what was named as Hyperspectral Soil Mapping.

2 Material and Methods
This study was carried out in the Upper Part of the Itatiaia National Park (INP), which

is defined by the region above the 2000 msnm. The INP has a mountainous relief and is located
Southern of Rio de Janeiro State, at the boundary with Minas Gerais and São Paulo states. The
INP was the first national park, created in 1937, and since it a conservation unit, it is a reference
area for environmental studies.

Chapter I
The RS as Proximal Soil Sensing (PSS) (350 to 2500 nm) was applied to explore the

spectral preprocessing to predict the soil properties: aluminum (Al), calcium (Ca), potassium
(K), magnesium (Mg), sodium (Na), phosphorus (P), plus pH, total carbon (TC), hydrogen (H)
and nitrogen (N). There were used the algorithms: Artificial Neural Network (ANN), Random
Forest (RF), Partial Least Squares Regression (PLSR) and Cubist (CB).

Themain spectral preprocessing are ContinuumRemoval (CR) (CLARK, 1999), Savitzky­
Golay (SVG) (SAVITZKY; GOLAY, 1964) with different settings across the derivative, order
polynomial and search window (VASQUES et al., 2008), and Inverse of Reflectance to Factor of
104 (IRF4). The IRF4 was obtained dividing 10,000 for each value of the reflectance spectrum.
A conversion of spectral data to absorbance by the ­log10 (reflectance) (ROSSEL et al., 2005)
(AB­log) was also included as a preprocessing. The main preprocessing curves’ shape can be
observed in Figure 1.



Figure 1: Visualization of main Spectral preprocessing curves: (A) Continuum Removal (ma­
genta); no treatment (raw spectrum) (green); absorbance (red); Inverse of Reflectance to
Factor of 104 (light green). (B) Savitzky­Golay first derivative (dark blue); Inverse of Re­
flectance to Factor of 104 + Savitzky­Golay first derivative (light blue); Savitzky­Golay
first derivative + Inverse of Reflectance to Factor of 104 (brown); Inverse of Reflectance
to Factor of 104 (light green). Notice, each curve fits its own y (reflectance) scale.

Chapter II
To find out if the number of points in the INP was sufficient, the spatial dependence was

analyzed with a semivariogram (Figure 2).
To perform the integration between DSM and PSS we used the PSS values from sensor

ASD Fieldspec 4 (from top soil samples), images from Multispectral sensor RapidEye with 5
bands and the Hyperspectral one CHRIS with 62 bands. The CHRIS image had to be carefully
adjusted in order to be used. The treatments involved a geometric and atmospheric correction,
adjust in pixel size, in reflectance intensity among the different images, and shadow treatment.

The DSM and PSS integration were calculated with DSM approach, but instead to pre­
dict a soil property it predicts a value of a band from PSS. The output is an image of a PSS
band, the process was identified here as subsurfacing image, and it was repeated to generate 100
images from chosen PSS wavelengths. The subsurface image (Figure 3) was used to run the
computational mapping process, named in this study as Hyperspectral Soil Mapping (Figure 4).

Figure 2: Semivariogram of TC in INP with
spherical model.

Figure 3: The upper part of INP Subsurface
RapidEye image.
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Figure 4: Subsurfacing process, the steps to the Hyperspectral Soil Mapping (HSM) processes.

3 Results

Chapter I
To evaluate the performance of predictivemodels, the RootMean Squared Error (RMSE),

coefficient of determination (R2) and Ratio of Performance to Deviation (RPD) were calculated.
The best model associated with the best preprocessing, was the CB for TC with R2 of 0.85, RPD
of 2.87 (highest), followed by PLSR for N with R2 of 0.82 and RPD of 2.65, and RF for Al with
R2 of 0.54 and RPD of 1.54 (Table 3 and Figure 5).

Table 3: Outstanding preprocessing with the associated models for each property of soils sam­
pled at INP.
Preprocessing Model Soil property R2 MSE RMSE bias RPD
IRF4 + SVG­1­2­11 + NR 434 rf Al 0.536 0.944 0.954 0.037 1.541
IRF4 cb H 0.672 0.173 0.411 ­0.034 1.817
SVG­1­2­11 + IRF4 + NR 434 rf K 0.275 0.017 0.118 0.003 1.244
SVG­1­2­11 rf Mg 0.194 0.074 0.267 0.014 1.148
IRF4 + NR 434 plsr N 0.819 0.018 0.13 ­0.005 2.649
SVG­1­2­11 + IRF4 + NR 434 rf P 0.072 66.896 7.436 0.137 1.07
SVG­1­2­11 rf pH 0.363 0.096 0.309 ­0.005 1.286
IRF4 cb TC 0.852 3.998 1.958 ­0.044 2.867
*Ca andNa are not shown in the table due to the very poor results. The description of each preprocessing
is according to Table* 2.1; rf: random forest; cb: cubist; plsr: Partial Least Squares Regression; TC: to­
tal carbon; R2: coefficient of determination; MSE: mean squared error; RMSE: root­mean­square error;
RPD: ratio of performance to deviation. The coefficients units correspond to Table* 2.2. (*Mentioned
Tables are in the main text).

Figure 5: Relationship between the observed and predicted values of N and TC.



Chapter II
The DSM using RapidEye reaches an R2 of 0.32 while using the HSM with Subsurface

image the R2 jump to 0.56, providing an increment gain of 75% in prediction capacity (Table
4). It is also possible to see the result in the maps on Figures 6a and 7a, the first shows an over
estimation of TC while the second is more balanced, which is confirmed by the Figure 7b. The
performance of CHRIS was close to that of RapidEye, with a slight increment of prediction
capacity.

Table 4: Descriptive statistics of spatial prediction of TC on INP over the used covariates, and
the main explanatory covariate.

Covariates groups R2 MSE RMSE bias Main cov.
RapidEye + Terrain + Geographic (Without CHRIS) 0.32 22.39 4.73 0.19 DEM
Subsurface CHRIS (bands 1:100) + RapidEye + Terrain + Geographic 0.57 14.13 3.76 0.09 band 53
Subsurface RapidEye (bands 1:100)+RapidEye+ Terrain+ Geographic 0.56 14.56 3.82 0.04 band 75
R2: coefficient of determination; MSE: Mean Squared Error in (%) as TC; RMSE: Root Mean Square Error in
(%) as TC; Main cov.: Higher ranked covariate from correspondent Random Forest model. Band 53 = 895 nm and
band 75 = 1480 nm.
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Figure 6: Spatial prediction of TC over INP, with the covariates RapidEye, Terrain, Geographic.
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4 Conclusions
Considering that soil carbon is an indicator of soil health, quality and degradation, the

results obtained from the applied spectral soil properties prediction techniques show potential
for fast environmental assessment. In this sense those techniques can contribute for the Itatiaia
National Park management and monitoring.

Chapter I
Each soil property has the prediction potential increased by a specific spectral prepro­

cessing. For TC, the IRF4 outperformed the commonly used preprocessing, including SVG. For
some preprocessing of soil properties, such as CR for TC and IRF4 (alone) for N, the prepro­
cessing decreased the potential for prediction in comparison with the non­treated spectra. The
algorithm that was more frequently among the higher predicted values was the RF (5 out of 8).
The IRF4 technique is introduced in spectroscopy here for the first time, thus, it is recommended
more studies to confirm the potential as a preprocessing tool.

Chapter II
By the analysis of the semivariogram it is understood that the sampling mesh of 84 soil

profiles was sufficient for sampling points in the mapping of the INP upper region. The com­
bination of PSS and DSM through the use of subsurface image in the HSM was very efficient
to map the soil properties, when compared with the normal DSM process. The HSM is the first
direct integration between PSS and HSM.

Keywords: Spectral covariates. Spectral prediction of soils. Hyperspectral map.



LISTA DE FIGURAS

2.1 Itatiaia National Park and upper part (plateau) location . . . . . . . . . . . . . . . . . . . . . 9
2.2 Workflow of the soil analysis and spectral predictions . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Reflectance of profiles P32 and P77 horizons, and image of flattening sam­

ple surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Visualization of main Spectral preprocessing curves . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Design of the Artificial Neural Network, for training and predicting . . . . . . . . 16
2.6 Density plot of properties of soils sampled at Itatiaia National Park . . . . . . . . . 20
2.7 Prediction of Al, H, K, Mg, N and P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 Prediction of pH and TC values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Spectral plots of soil samples with IRF4 preprocessing, highlight for fold 8 . 26
3.1 Itatiaia National Park and the INP plateau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Distribution of Total Carbon in the soil according to the elevation in the

upper part of INP, Rio de Janeiro state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Semivariogram of Total Carbon (TC) in soils from upper part of INP with

the spherical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Mosaic of CHRIS PROBA images of the INP plateau, Rio de Janeiro State . 39
3.5 Mosaic of reflectance equalization CHRIS PROBA image of the INP pla­

teau, Rio de Janeiro State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Pixel values before and after the reflectance intensity equalization . . . . . . . . . . 41
3.7 Spectral behavior before and after shadow treatment . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 Shadow treated CHRIS image of INP plateau, Rio de Janeiro State . . . . . . . . . 43
3.9 The steps of DSM processing applied to soil of INP plateau, Rio de Janeiro

State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.10 Subsurfacing process, the steps to the Hyperspectral Soil Mapping (HSM)

processes applied to soils of the INP plateau, Rio de Janeiro State . . . . . . . . . . 45
3.11 Multispectral, Hyperspectral and proximal sensors . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.12 The upper part of INP plateau Subsurface image created using CHRIS and

RapidEye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.13 Comparison of spectral behavior Subsurface CHRIS and RapidEye . . . . . . . . . 50
3.14 Workflow through CHRIS treatment, adjusts, modeling the Subsurface ima­

ges, and spatial prediction TC with HSM in INP, Rio de Janeiro state . . . . . . . 51
3.15 Spatial prediction of TC over INP plateau, with the covariates RapidEye,

Terrain, Geographic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.16 Spatial prediction of TC of soils in the INP plateau, with the covariates Non

Treated CHRIS, RapidEye, Terrain, Geographic . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.17 Spatial prediction of TC of soils in the INP plateau, with the covariates

Shadow treated CHRIS, RapidEye, Terrain, Geographic . . . . . . . . . . . . . . . . . . . . 55
3.18 Spatial prediction of TC of soils in the INP plateau, with the covariates

Subsurface CHRIS (bands 1 to 62), RapidEye, Terrain, Geographic . . . . . . . . . 56
3.19 Spatial prediction of TC of soils in the INP plateau, with the covariates

Subsurface CHRIS (bands 1 to 100), RapidEye, Terrain, Geographic . . . . . . . . 57



3.20 Spatial prediction of TC of soils in the INP plateau, with the covariates
Subsurface RapidEye (bands 1 to 100), RapidEye (multispectral bands 1 to
5), Terrain, Geographic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



LISTA DE TABELAS

2.1 Preprocessing applied to spectral data from soil samples of the Itatiaia Na­
tional Park. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Descriptive statistics for properties of soils sampled at the upper part of
Itatiaia National Park, Rio de Janeiro State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Outstanding preprocessing with the associated models for each property of
soils sampled at INP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Selected cross­validated groups of the preprocessingwith associatedmodels
for values of TC, N, Al and pH of soils from the INP. . . . . . . . . . . . . . . . . . . . . . . 21

2.5 The coefficients within the 10 folds for TC, P and K. . . . . . . . . . . . . . . . . . . . . . . . 24
3.1 Covariates source and description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Groups of covariates to predict TC on soils of INP plateau. . . . . . . . . . . . . . . . . . 48
3.3 Descriptive statistics of spatial prediction of TC of soils in the INP plateau,

covariates used, and the main explanatory covariate. . . . . . . . . . . . . . . . . . . . . . . . 59



LISTA DE ABREVIAÇÕES E SIGLAS

Algoritmos e softwares
ANN Redes Neurais Artificiais (do inglês Artificial Neural Network)

CB Cubist

cHLS Conditioned Latin Hypercube Sampling algorithm

ML Aprendizado de Máquina (do inglêsMachine Learning)

R Linguagem de programação

RF Random Forest

PLSR Regressão de Mínimos Quadrados Parciais (PLSR, do inglês Partial Least Squa­
res Regression )

PSS Sensoriamento Remoto Proximal do Solo (do inglês Proximal Soil Sensing)

SAGA­GIS System for Automated Geoscientific Analyses ­ Geographic Information System

QGIS Quantum Geographic Information System

Covariáveis
Aspect Represents exposure faces, values in degrees (0 to 360◦)

Convergence The general shape of the hillside in all directions (concave, rectilinear or convex)

Cat_area Related to volume of flooding that reaches a certain cell

CHNB Interpolation of a channel network base level elevation

CHND Altitude above the channel network (CHNB ­ original elevation)

DEM Modelo Digital de Elevação (do inglês Digital elevation model)

LS_factor Attribute equivalent to the topographic factor of the Revised Universal Soil Loss
Equation (RUSLE)

NDVI Índice de Vegetação por Diferença Normalizada (do inglês Normalized Diffe­
rence Vegetation Index)

Northernness Indicates the direction of the slope relative to the north. Northernness = abs(180◦
−Aspect)

Plan_curv The shape of the hillside on the horizontal plane (concave, rectilinear or convex)

Prof_curv The shape of the hillside on the vertical plane (concave, rectilinear or convex)

RSP Represents relative slope position based on the base channel network

SAVI Índice de Vegetação Ajustado ao Solo (do inglês Soil­Adjusted Vegetation Index)

Slope Gradient or rate of change of elevation between neighboring cells

TWI Describes a tendency for a cell to accumulate water



Distância
nm Nanômetros

cm Centímetros

m Metro

msnm Metros sobre nível do mar

Km Quilômetros

Espectral
MIR Comprimentos de onda do Infravermelho Médio (do inglêsMiddle Infra­Red)

NIR Comprimentos de onda do Infravermelho Próximo (do inglês Near Infra­Red)

SWIR Comprimentos de onda do Infravermelho de Ondas Curtas (do inglês Short­Wave
Infra­Red)

UV Comprimentos de onda do Ultravioleta

Vis Comprimentos de onda do Visível – parte do espectro eletromagnético (luz) de­
tectável pelos olhos humanos

Vis­NIR Comprimentos de onda do Visível ao Infravermelho Próximo (do inglês visible
to near­infrared)

Vis­NIR­SWIR

Comprimentos de onda do Visível ao Infravermelho de Ondas Curtas (do inglês
visible to near­infrared and short­wave infrared)

VNIR Comprimentos de onda do Visível ao Infravermelho Próximo (do inglês visible
to near­infrared)

V­SWIR Comprimentos de onda do Visível ao Infravermelho de Ondas Curtas (do inglês
visible to near­infrared and short­wave infrared)

Estatística
K­folds Modelo de validação de dados

Ns Number of Samples

OOB Out­Of­Bag

R2 Coefficient of Determination

RMSE Root Mean Squared Error

RPD Ratio of Performance to Deviation

RMSECV Root Mean Square Error of Cross­Validation

RMSEP Root Mean Square Error of Prediction

Instituições
ASD Fabricante do espectrorradiômetro FieldSpec



CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

ESA Agência Espacial Europeia (do inglês European Spatial Agency)

FAPUR Fundação de Apoio à Pesquisa Científica e Tecnológica da UFRRJ

IBGE Instituto Brasileiro de Geografia e Estatística

INPE Instituto Nacional de Pesquisas Espaciais

SiBCS Sistema Brasileiro de Classificação de Solos ou Brazilian System of Soil Classi­
fication

UFRRJ Universidade Federal Rural do Rio de Janeiro

Localidade
INP Parque Nacional de Itatiaia (do inglês Itatiaia National Park)

RJ Rio de Janeiro

Pré­processamento espectral
AB­log Conversion to absorbance ­log10(R)

CR Continuum Removal

IRF4 Pré­processamento espectral: Inverso da Reflectância por um Fator de 104 ou
Inverse of Reflectance by a Factor of 104

SVG Savitzky­Golay

SVG­1­2­9 Savitzky–Golay 1st derivative using a 2nd­order polynomial and search window
9

SVG­1­2­11 Savitzky–Golay 1st derivative using a 2nd­order polynomial and search window
11

SVG­1­2­11 + IRF4

Savitzky–Golay 1st derivative using a 2nd­order polynomial and search window
11 + the Inverse of Reflectance by a factor of 104

IRF4 + SVG­1­2­11

Inverse of Reflectance by a Factor of 104 + Savitzky–Golay 1st derivative using
a 2nd­order polynomial and search window 11

SVG­1­2­11 + IRF4 + NR 434

Savitzky–Golay 1st derivative using a 2nd­order polynomial and search window
11 + Inverse of Reflectance by a Factor of 104 + Noise Reduction (from 434 nm)

IRF4 + SVG­1­2­11 + NR 434

Inverse of Reflectance by a Factor of 104 + Savitzky–Golay 1st derivative using
a 2nd­order polynomial and search window 11 + Noise Reduction (from 434 nm)

SVG­1­2­11 + NR 434



Savitzky–Golay 1st derivative using a 2nd­order polynomial and search window
11 + Noise Reduction (from 434 nm)

IRF4 + NR 434

Inverse of Reflectance by a Factor of 104 + Noise Reduction (from 434 nm)

PCAL Principal Component Analysis Location

RHCC Removal of High Correlated Covariates

stepAIC Stepwise Algorithm Akaike information criteria

Química e elementos químicos
Al Alumínio

C Carbono

Ca Cálcio

K Potássio

Mg Magnésio

Na Sódio

P Fósforo

pH Potencial hidrogeniônico

H Hidrogênio

N Nitrogênio

TC Carbono Total no Solo (do inglês Total Carbon)

Sensores
3A60_41 Imagem do sensor CHRIS

3A61_41 Imagem do sensor CHRIS

4CDF_41 Imagem do sensor CHRIS

CHRIS Satélite Imageador Compacto de Alta Resolução (do inglês Compact High Reso­
lution Imager)

PROBA Satélite que transporta o sensor CHRIS (do inglês space platform Project for On
Board Autonomy)

Mapeamento e Sensoriamento remoto
DSM Mapeamento Digital de Solos (do inglês Digital Soil Mapping)

HSM Mapeamento Hiperespectral de Solos (do inglês, Hyperspectral Soil Mapping)

RS Sensoriamento remoto (do inglês Remote Sensing)
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1 GENERAL INTRODUCTION

Soil is beyond a natural resource which provides energy, food, fiber and many environ­
mental services like water filtering and regulation. Soil supports all terrestrial life. There is an
association between soil quality and human health; this association is named soil health, where
soil organic carbon is an indicator of soil quality (health). The current human deficiency of
essential micro and macro­nutrients must be supplied through soil (LAL, 2016). These reasons
only already surplus the agronomic ones in terms of the importance of soils.

Traditionally, the identification and quantification of soil elements (chemistry analyses)
are effectuated through titration (WALKLEY; BLACK, 1934; BECKWITH, 1959; DONA­
GEMA et al., 2011; TEIXEIRA et al., 2017). These methods uses chemical reagents, which
must be correctly disposable, increasing their cost and potential of pollution if incorrectly dis­
posed (PAIM et al., 2002; IMBROISI et al., 2006). Alternative methods, such as the application
of Remote Sensors, were developed and currently enhanced to bring accurate results. In the con­
text of Proximal Soil Sensing (PSS), Visible­Near­Infrared and Middle Infrared ranges, are the
most common (ROSSEL et al., 2009; ROSSEL et al., 2011; NAWAR et al., 2017).

In the perspective of land management of soil properties, the spatial analyses such as
mapping is one the most useful tools (LIMA et al., 2013). The Digital Soil Mapping (DSM)
with computational and Remote Sensing (RS) resources from satellites has been largely applied
to map soil classes and soil properties (LIMA et al., 2013; LAMICHHANE et al., 2019).

Environmental reference areas, natural or without human interference for a long time,
are key to test and reply RS and DSM methods. The Itatiaia National Park (INP) is located in
the southeastern region of Brazil in the south of Rio de Janeiro state and it has boundaries with
Minas Gerais state. It is a conservation unit, the first national park created in 1937, and has a
low degree of anthropic actions due to recent agricultural activities. In the upper part of INP,
due to the altitude and climatic factors, the soils tend to preserve more carbon than in the highly
weathered soils of the lower part of the park. The stratification caused by climatic variation
with altitude results in plenty of endemic and threatened of extinction species of fauna and
flora (about 116 birds, 73 mammals, and 40 vegetation endemics species). Thus, INP is key to
preserve part of Brazilian and Atlantic forest biodiversity (BARRETO et al., 2013b; BARRETO
et al., 2013a). The importance of the park is also given by the potential for water distribution in
12 important regional hydrographic basins. Especially in summer, the soils in the INP plateau
store rainwater (AXIMOFF et al., 2014), which is slowly released over a long period throughout
the year, thus feeding several springs that will contribute to important rivers like the Paraíba do
Sul and Rio Grande, even during the dry season.

This work consists of two chapters that are intertwined in the following form: Chapter I
­ The application of PSS in the upper part of Itatiaia National Park, aiming the spectral record of
these soils with the respective horizons, the prediction of their properties using such reflectance
spectra, and the exploration and development of spectral preprocessing techniques. Chapter II ­
Mapping of total carbon in the soil with the technique of combining Multi­Hyperspectral orbital
remote sensing images and PSS. The chapters were written in English as they will be submitted
for publication in international journals of RS and DSM.

This work has a multidisciplinary approach and includes the areas: i) soil science; ii)
data science; iii) mathematical modeling through machine learning algorithms; iv) orbital and
proximal remote sensing; and v) DSM.
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2.1 RESUMO

A avaliação da refletância na faixa do visível, infravermelho próximo e infravermelho de ondas
curtas (Vis­NIR­SWIR, ou simplesmente V­SWIR) combinada com algoritmos constitui méto­
dos aplicáveis para análises do solo. Os objetivos deste estudo foram investigar a capacidade
desses métodos de predição de propriedades do solo, tais como o conteúdo dos elementos extraí­
veis Al, Ca, K, Mg, Na e P; valores de pH, carbono total (TC), H e N; e desenvolver, combinar
e comparar diversos pré­processamentos espectrais sobre os comprimentos de onda (350–2500
nm), para serem utilizados nos seguintes algoritmos de aprendizado de máquina: Redes Neu­
rais Artificiais (ANN, do inglês Artificial Neural Network), Random Forest (RF), Cubist (CB),
e a comumente aplicada, Regressão de Mínimos Quadrados Parciais (PLSR, do inglês Partial
Least Squares Regression). Foram coletadas 300 amostras de horizontes de 84 perfis de solo
da parte alta do Parque Nacional de Itatiaia (INP, do inglês Itatiaia National Park), que está
localizado no Estado do Rio de Janeiro, região sudeste do Brasil. O INP é uma unidade de
conservação, sendo sua principal finalidade a preservação de fauna e flora, com a possibilidade
de atividades de lazer em espaços definidos; portanto, é uma área de referência para estudos
do ambiente de Floresta Atlântica. A validação cruzada do tipo k­fold foi implementada para
dividir os dados e validar 6.000 modelos. O melhor pré­processamento espectral foi o Inverso
de Refletância de Fator de 104 (IRF4) para TC com algoritmo CB, superando os métodos de
pré­processamentos comumente utilizados, com um R2 médio entre os folds de 0,85, RMSE de
1,96; e 0,67 com 0,041 respectivamente para H. Dentro dos folds preditos com os modelos para
TC, o melhor teve valor R2 de 0,95. A boa correlação com as técnicas V­SWIR mostra que o
método pode ser usado para predição de propriedades de solos e, do mesmo modo, utilizado
para o monitoramento ambiental rápido.

Palavras­chave: Pedometria. Modelagem de solo. Sensoriamento remoto proximal.
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2.2 ABSTRACT

Evaluation of visible, near­infrared and shortwave infrared reflectance (Vis­NIR­SWIR, for
short V­SWIR) combined with algorithms constitute applicable methods for soil analysis. The
main objectives of this study were to investigate the ability of these methods to predict soil prop­
erties, such as the contents of the extractable elements, Al, Ca, K, Mg, Na, P, and values of pH,
total carbon (TC), H and N. Also, to develop, combine and compare different spectral (350–
2500 nm) preprocessing to be applied in machine learning algorithms such as: Artificial Neural
Network (ANN), Random Forest (RF), Cubist (CB) and the common Partial Least Squares Re­
gression (PLSR). A total of 300 soil samples from horizons of 84 soil profiles were collected
in the upper part of Itatiaia National Park (INP), located in the State of Rio de Janeiro, South­
eastern Brazil. The INP is a conservation unit, and its main mission is the preservation of fauna
and flora, with some areas set for leisure; thus it is a reference area for environmental studies
of the Atlantic Forest. The k­fold cross validation approach was implemented to split data and
validate 6,000 models. The best spectral preprocessing was the Inverse of Reflectance to Fac­
tor of 104 (IRF4) for TC with CB algorithm, outperforming the commonly used preprocessing
methods, with an averaged R2 among the folds of 0.85, RMSE of 1.96; and 0.67 with 0.041
respectively for H. Within the predicted folds with the models of TC, the highest prediction had
a R2 of 0.95. The good correlation with V­SWIR techniques shows that the method can be used
for soil properties prediction, and used for fast environmental monitoring.

Keywords: Pedometrics. Soil modeling. Proximal soil sensing.
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2.3 INTRODUCTION

Soils in tropical regions are predominantly highly weathered and they usually have low
organic carbon (C) and nitrogen (N) in the upper horizons. However, in the high altitudes of
mountain ranges, peculiar climate with low temperatures and endemic vegetation occur, resul­
ting in distinct soil formation processes. The Itatiaia National Park (INP) in the State of Rio
de Janeiro, Southeastern region of Brazil, is an example of these conditions, mainly in the INP
upper part (plateau), which is above 2000 msnm of the topographic contour line. The climatic
conditions and rock outcrops favor the occurrence of herbaceous graminoid plants, mostly Cy­
peraceae and Poaceae, arranged in clumps, with few incidences of other species (SOARES et
al., 2016). The low temperatures also lead to preservation of C and its incorporation into the
soil matrix. Thus, compared to most tropical soils, the INP soils have a large amount of Total
Carbon (TC), which reaches up to 29.5%, according to recent studies of Costa et al. (2020) in
the INP, and thus an elevated content of N, due to the strong correlation between them. The
mountainous relief and the access limited to field trails in the INP plateau, results in hard loco­
motion, transport and poor communications, all making it more difficult for field campaigns to
map soils and other studies as well.

Under the umbrella of the Remote Sensing tools, the Proximal Soil Sensing (PSS) has
been developed and applied to predict soil properties features. Different processing algorithms
and methods, such as preprocessing spectral algorithms, statistical predictions and machine le­
arning algorithms, are able to deliver different accuracy for each soil property and feature. With
appropriate management the prediction of soil organic carbon using spectral data can reach high
accuracy (DANGAL et al., 2019). The main contribution from this study is to bring a wide
range of combinations of spectral preprocessing techniques with statistical and machine lear­
ning algorithms for different soil properties prediction using spectral reflectance.

This study was motivated by the fact that the INP plateau has peculiar and distinct en­
vironmental conditions from most tropical regions of Brazil, resulting in soils with high orga­
nic carbon contents, consequently, different soil types, properties and environmental services.
The fact that the INP is a conservation unity, makes it a reference study area for Atlantic Fo­
rest ecosystems, such as the altitude fields that predominate in the plateau region. In addition,
the registration of spectrum of soils from the INP plateau will allow for further studies, as the
methods and techniques of V­SWIR spectrum processes evolves, and to monitor variations in
the soil properties as a result of changes in climate behavior.

The hypothesis of the work is that the combination of spectral preprocessing techniques
can enhance the prediction of soil properties across different statistical and machine learning
methods using spectral data. Also, that the preprocessing application always improve the pre­
diction capacity.

The general objective of the study was to test and compare the capacity of ANN, PLSR,
RF and CB algorithms for predicting the contents of the extractable elements aluminum (Al),
calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P); values of pH,
total carbon (TC), hydrogen (H) and nitrogen (N); through the development, combination and
application of spectral preprocessing techniques along the V­SWIR spectral region.
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2.4 LITERATURE REVIEW

2.4.1 The Reflectance

According to Jensen (2014), reflectance is beyond the simple “process whereby radia­
tion “bounces off”an object like [...] bare soil”. Indeed, the process involves “reradiation of
photons in unison by atoms or molecules in a layer approximately one­half wavelength deep”.
The reflecting surfaces can be from essentially smooth to roughness, respectively acting as a
perfect specular reflector, or perfect diffuse reflector, also called Lambertian surface where “the
radiant flux leaving the surface is constant for any angle of reflectance”. To illustrate that, a very
calm water surface acts like specular reflector, while forest diffuse reflector, and a material like
spectralon (material made from polytetrafluoroethylene) is nearly perfectly Lambertian, with
the reflectance is generally more than 99% over a range from 400 to 1500 nm and more than
95% from 250 to 2500 nm.

The radiation budget equation (Equation 2.1) says that the total amount of radiant flux
in specific wavelengths (λ) incident to the terrain (or surface) (Φiλ), from any angle in a he­
misphere, must be accounted for by evaluating the amounts of: radiant flux reflected from the
surface (Φreflectedλ), radiant flux absorbed by the surface (Φabsorbedλ), and radiant flux transmit­
ted through the surface (Φtransmittedλ):

Φiλ = Φreflectedλ + Φabsorbedλ + Φtransmittedλ (2.1)

As soil is an opaque object (where PSS wavelengths can not pass through), consequently
transmittance is zero, the radiation budget equation (Equation 2.2) can be write as:

Φiλ = Φreflectedλ + Φabsorbedλ (2.2)

Thus, the Hemispherical reflectance (ρλ) (dimensionless) is defined as the “ratio of the
radiant flux reflected from a surface to the radiant flux incident to it”, given by Equation 2.3:

ρλ =
Φreflectedλ

Φiλ

(2.3)

In remote sensing the spectrum curves are usually presented percent reflectance. In fact,
if we take the simple hemispherical reflectance equation and multiply it by 100, we obtain an
expression for percent reflectance (ρλ%), given by Equation 2.4:

ρλ% =
Φreflectedλ

Φiλ

× 100 (2.4)

In practical aspects, the reflectance spectrum is computed by dividing the spectral res­
ponse of the target of interest (soil, vegetation, any surface or object) by the spectral response
of the reference sample (commonly spectralon).

2.4.2 Wavelengths Intervals on Proximal Soil Sensing

The Proximal Sensing techniques have been applied in a wide range of fields (LU;
FEI, 2014), including soil science. The Proximal Soil Sensing (PSS) techniques are fast, non­
destructive, environmental­friendly and cost­effective (ROSSEL et al., 2005). PSS deals with
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wavelength range between 350 and 30,000 nm, visible and infra­red regions respectively. There
is no consensus about wavelength segments nomenclature (FANG et al., 2018). According to
Jensen (2014) the wavelength interval in the electromagnetic spectrum are commonly referred
to as a band, channel, or region; delimited by the channels: Violet limit 400 nm; Blue 450 nm;
Green 500 nm; Green limit 550 nm; Yellow 580 nm; Orange 600 nm; Red 650 nm; Red limit
700 nm; Near­infrared 1000 nm; Far­infrared 30000 nm. By intervals as: Ultra Violet (UV, 254
to 400 nm); Visible (Vis, 400 to 700 nm); Near Infrared (NIR, 700 to 1.000 nm) and Middle­
Infrared region (MIR, often referred to as the short wavelength infrared, SWIR) includes energy
with a wavelength of 1300 to 3000 nm.

The branch of knowledge of PSS studies presented the spectral range as: VNIR spectrum
(400­1100 nm) (DANIEL et al., 2003); VIS (400­700 nm), NIR (700­2500 nm) andMIR (2500­
25,000 nm) (ROSSEL et al., 2005); VIS (400­700 nm), NIR (700­1100 nm), and SWIR (1100­
2500 nm) (BEN­DOR et al., 2009); Vis­NIR (350­2500 nm) and MIR (2500­25,000 nm or
4000­400 cm−1, as Wave Number expressed in terms of energy) (TERRA et al., 2015). Where
Wave Number (Ψ) is the number of waves in a unit length (usually per cm) (JENSEN, 2014);
Vis (350­780 nm); NIR (780­2.500 nm); VNIR (350­1000 nm) and Vis­NIR (350­2.500 nm))
(FANG et al., 2018); NIR (700­2.500 nm) andMIR (2.500­25.000 nm) (DANGAL et al., 2019);
Vis­NIR (400­2500 nm) (ROSSEL et al., 2009; GOMEZ et al., 2012; VASQUES et al., 2014;
NOURI et al., 2017; PADARIAN et al., 2019); Vis­NIR (350­2500 nm) (CONFORTI et al.,
2015; MCGILL et al., 2015; TERRA et al., 2015; DOTTO et al., 2018; PINHEIRO et al., 2017;
ROUDIER et al., 2017); Vis­SWIR (350­2.500 nm) (CHICATI et al., 2019); VIS­NIR­SWIR
(400­2500 nm) (DEMATTÊ et al., 2016).

In agreement with Jensen (2014), Demattê et al. (2016), Chicati et al. (2019), in this
study we adopted the definition of Visible, Near­Infrared and Shortwave Infrared reflectance
(Vis­NIR­SWIR, for short V­SWIR) as ranging from 350 to 2500 nm.

2.4.3 Proximal Sensing to Proximal Soil Sensing and its Features

One of the early spectral studies started around 1900s with optical properties of Iodine
(COBLENTZ, 1903) and Infra­Red absorption spectra of organic compounds (COBLENTZ,
1904). Later it was applied to inorganic and mineralogical fields (HUNT et al., 1950; HUNT;
TURNER, 1953). A chart with probable positions of characteristic Infra­Red absorption bands
of organic and inorganic compounds was presented by Colthup (1950).

Among the initial spectral soil investigations we find the studies of Bowers & Hanks
(1964), who analyzed the soil reflectance according to moisture content, organic matter, and
particle size. The vibrational – electronic processes with the spectral signatures of soil minerals
was early characterized by Hunt (1977), with some recent studies by Fang et al. (2018) and
Chicati et al. (2019). Soil properties prediction using V­SWIR and MIR has been a topic of
development for the PSS field. Beyond V­SWIR, MIR has shown a better capacity to predict
soil properties (CLAIROTTE et al., 2016; DANGAL et al., 2019).

According to Bowers & Hanks (1964) “The elevated daytime temperatures of dark­
colored soils is attributed to their greater absorption of solar radiant energy”. Soil organic matter
is the main soil constituent that contribute to the dark soil color. Organic matter (OM) and iron
oxides tend to absorb incident radiation relatively homogeneously across V­SWIR wavelengths
and a low iron content changes the shape of the curve from a horizontal to a positive upward
trend (DEMATTÊ, 2002), this is confirmed when the OM is removed (DAS et al., 2015); and
the absorption power of incident radiation of OM is mainly between 450 and 1000 nm (FOR­
MAGGIO et al., 1996).
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Spectral reflectance increases with the decrease in the size of soil particles (BOWERS;
HANKS, 1964), especially below 0.4 mm in diameter (DAS et al., 2015). Correlations among
soil attributes and spectral signatures were found by Demattê et al. (2012), Chicati et al. (2019),
and these spectral characteristics allow the PSS to identify the constituents of the soil (CHICATI
et al., 2019). Spectral behavior of different soil classes is governed mainly by mineralogical
composition, OM content, and grain size (FORMAGGIO et al., 1996). In a study of spectral
behavior of a Brazilian soil in which the OM was removed by chemical treatment, there was an
increase of the reflectance factor by more than 100%, driven mostly by the interaction of OM
with oxide minerals (GALVÃO; VITORELLO, 1998).

Among the spectral reflectance most studied soil properties we find contents of Al, H,
Ca, K, Mg, Na, N, P, pH, OM; iron oxides, and granulometry (FORMAGGIO et al., 1996;
ROSSEL et al., 2005; GOMEZ et al., 2008; DEMATTÊ et al., 2012).

Another approach is based on the fact that soil has its own spectral behavior also cal­
led as spectral signature, which varies according to its mineralogical composition, the content
of organic matter, moisture and granulometry (DAS et al., 2015). For the spectral comparison
techniques, it is useful to create spectral libraries. Many institutions have their own spectral
libraries (MULDER et al., 2011); such as the Brazilian Spectral Library, which can contribute
to the prediction of soil properties such as clay, sand, organic matter, cation exchange capacity,
pH and base saturation in soil (DEMATTÊ et al., 2019). They consist of reference spectra, ob­
tained in laboratories or in the field under more controlled conditions (GALVÃO et al., 2001;
MULDER et al., 2011; DEMATTÊ et al., 2019). The importance of spectral libraries was also
highlighted in a study with spectral data from soils from several European countries (PADA­
RIAN et al., 2019).

Although it is possible to identify soil constituents through spectral behavior, in other
words analyzing the curves and their features like intensity and shapes (DEMATTÊ et al., 2012),
the spectral data is generally large data, being hard for the human mind to compile. The appli­
cation of computational algorithms and software (ROSSEL, 2008) can heighten this capacity to
predict information from spectral data. Several soil properties and attributes have been predicted
using different methods and predictive algorithms (ROSSEL et al., 2005).

2.4.4 Algorithms and Preprocessing

The most applied technique to predict soil properties is the Partial Least Squares Re­
gression (PLSR), which is a statistical method (GOMEZ et al., 2008; ROSSEL et al., 2008;
ADELINE et al., 2017; KOPAČKOVÁ et al., 2017; NANNI et al., 2018). Machine Learning
Algorithms such as Artificial Neural Network (ANN) were also applied with satisfactory results
(DANIEL et al., 2003; ROSSEL; BEHRENS, 2010). Other studies compared the ability to pre­
dict soil properties by spectral data using algorithms such as ANN, Random Forest (RF), PLSR
and Cubist (CB) (MOUAZEN et al., 2010; KUANG et al., 2015; MORELLOS et al., 2016;
NAWAR et al., 2017; DANGAL et al., 2019).

Although raw spectral data may be used for soil property prediction (CHICATI et al.,
2019), the use of preprocessing can enhance the algorithms’ capacity. Some of common used
techniques as the Savitzky­Golay filter (SAVITZKY; GOLAY, 1964) to the noise reduction, and
studies showed that it improves the results of soil properties prediction (MALEKI et al., 2006;
CLAIROTTE et al., 2016; GHOLIZADEH et al., 2016; CEZAR et al., 2019). The Continuum
Removal approach has also been used with good results (CLARK, 1999; TERRA et al., 2015;
KOPAČKOVÁ et al., 2017; PINHEIRO et al., 2017).
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2.5 MATERIAL AND METHODS

2.5.1 Description of the Study Area

The INPwas the first national park created in Brazil (1937). It is designated as an area for
nature conservancy and preservation of the Atlantic Forest biome, due to its high biodiversity.
Since the eighteenth­century researchers from many countries have visited the region to study
the biodiversity of the Serra da Mantiqueira mountains, where the INP is located.

The park has an area of 28035 hectares (blue line in Figure 2.1), which is divided into
three sectors, Mauá (east), the lower part (south) and the upper part with 16402 hectares (central
and northwest, green line in Figure 2.1). The study was conducted in the upper part of the
park, region designated by Tomzhinski et al. (2012) to those areas above the 2000 m of the
topographic line to the south, southeast and southwest, going toward the limits of the INP in the
other directions. The highest point in the park is the so­called Pico das Agulhas Negras with
an elevation of 2,791.6 msnm. The INP is located at the border of Rio de Janeiro and Minas
Gerais states, and is also near the São Paulo state border in Southeast region of Brazil. The area
is comprised by the UTM coordinates 523500–546500m E and 7514500–7540500m N, Zone
23 K, datum WGS84.

Elevation	(meters)

<=	628

628	-	868

868	-	1108

1108	-	1348

1348	-	1588

1588	-	1828

1828	-	2068

2068	-	2308

2308	-	2547

>=	2548

INP	limits

INP	limits

INP	upper	part

Tracks

Sampling	points

Elevation	(meters)

<=	628

628	-	868

868	-	1108

1108	-	1348

1348	-	1588

1588	-	1828

1828	-	2068

2068	-	2308

2308	-	2547

>=	2548

INP	limits

INP	limits

INP	upper	part

Tracks

Sampling	points

					7
5
2
0
0
0
0
m
	N

					7
5
3
0
0
0
0
m
	N

					7
5
4
0
0
0
0
m
	N

					520000m	E 					530000m	E 					540000m	E 					550000m	E

INP

Minas	Gerais

Rio	de	JaneiroSão	Paulo

Atlantic	Ocean

Minas	Gerais

Rio	de	Janeiro

São	Paulo

Atlantic	Ocean

South	

America

Espírito

Santo

Pacific

Ocean

Brazil

Lower	part

Projection	UTM

Datum	WGS84	

Zone	23K

Mauá

Figure 2.1: Itatiaia National Park and upper part (plateau) location, near the triple border of Rio
de Janeiro, Minas Gerais and São Paulo states. To the right, the three sections of the park:
Mauá (east), lower part (south) and the upper part (central and northwest). Source of area
delimitation lines: IBGE (2010), INP managers including Tomzhinski et al. (2012).

The vegetation profile inside the park changes with the altitude, composed of Dense Om­
brophilous Forest, which is split in three sub categories: Sub­Montane: located in plateau slopes
until 500 m; Montane: in the higher part of the plateau from 500 m to 1.500 m of altitude; and
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High­Montane: above limits of Montane (1.500 m). The Montane Mixed Ombrophilous Forest
is composed of vegetation that has the upper extract is mostly populated by the coniferAraucaria
angustifólia a pioneer specie. The main characteristic of the Montana Semi Deciduous Seaso­
nal Forest is presented by the fall of the leaves between 20 and 50% of the total, located from
400 to 1500 m of altitude. Transition systems: when mutual incursion of flora verified. And
Vegetation Refuge (17,08%): in the highest altitudes, usually above 1500 m, are the Altitude
Fields (BARRETO et al., 2013a), mostly composed of herbaceous graminoid plants (SOARES
et al., 2016). In proportions: High­Montane Ombrophilous Forest 50.17%; Vegetation Refuge
17.08%; Montane Ombrophilous Forest 12.09%; Rock outcrops 3.55%; Other 17.11%; (BAR­
RETO et al., 2013a).

According to the Köppen classification, the climate in the INP is Cwb­type (MODE­
NESI, 1992; SANTOS et al., 2000; ALVARES et al., 2013). The annual average temperature
is 11.5◦C, and the average during winter is 8.4◦C, sporadically reaching below zero. The do­
minant geology of the INP plateau is formed by alkaline syenites and granite­gneissic rocks
(BARRETO et al., 2013a; ROSA; RUBERTI, 2018). The landscape is mainly formed by high
mountains and escarpments with narrow valleys among the rock outcrops. The INP plateau has
an expressive area of soils with an organic horizon, covered mostly by herbaceous graminoid
plants, with a predominance of Cyperaceae and Poaceae arranged in clumps (SOARES et al.,
2016), located in the narrow valleys and talus with lower slopes.

2.5.2 Soil Sampling, Analysis and Preparations

Since the access to the area is restricted, due to the presence of endemic species, envi­
ronmental protection requirements, steep terrain and short number trails, the Conditioned Latin
Hypercube Sampling (cHLS) algorithm (MINASNY; MCBRATNEY, 2006) was set to place
soil sampling locations near the trails, with a 100 m buffer from the paths with highest potential
to express the variability of the soils in the region, as applied by Costa et al. (2020).

Initially, 80 sampling points were determined, but 6 fell on rock outcrops. During the
field excursion, 10 random sample points were added aiming to cover the range of INP soil vari­
ability, based on the experience of the research team, resulting in a total of 84 profiles (presented
in Figure 2.1 as yellow dots).

Among those 84 profiles, as describe by Costa et al. (2020), 33 were classified as Or­
ganossolos according to the Brazilian System of Soil Classification (SiBCS) (SANTOS et al.,
2018), which is an equivalent of Histosols (IUSS Working Group WRB, 2015); 34 Cambisso­
los (subdivided as 25 CAMBISSOLO HÚMICO and 9 CAMBISSOLO HÍSTICO) equivalent of
Cambisols, although both classes correspond to a top layer rich in OM; and 13 NEOSSOLOS
equivalent of Leptosols (in this case), with 5 of these shallow soils also having surface horizons
rich in OM. The last four profiles (one Alisol, one Ferralsol and two Cambisols) have a lower
content of OM.

From the horizons of the 84 profiles, 300 soil samples were obtained. Among the 300
soil samples, 96 were from horizons with high carbon content. The samples were prepared to
obtain the fine earth fraction and after that chemically analyzed for Al, H, Ca, K, Mg, Na, N, P,
pH and TC, according to Teixeira et al. (2017), and also used to analyze with spectral readings,
as described below.

Aiming to neutralize the influence of moisture on the spectral reading, soil samples were
placed in paper bags then dried in an oven under forced air circulation, at a temperature of 45◦C
for 48 hours (DEMATTÊ et al., 2012; DEMATTÊ; TERRA, 2013; TERRA et al., 2018). When
removed from the oven the samples were placed in a glass desiccator until they reached ambient
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temperature (close to 25 Celsius). Figure 2.2 presents a summary of these steps.

Figure 2.2: Workflow of the soil analysis and spectral predictions of soil properties.

For the spectral readings, soil samples were placed into Petry dishes of 9 cm in diameter,
just before the reading, to avoid absorption of ambient moisture. The soil samples were directly
placed on the dishes, without mixing, causing a heterogeneous particle distribution, where the
finer particles stayed on the surface, generally distributing from the center. Following the prepa­
ration chain, the sample surface was gently compacted with a flat circular glass object, to obtain
a leveled and flat surface (Figure 2.3). They were then read with an ASD FieldSpec 4 spectrome­
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ter with the following characteristics: Spectral Range from 350 to 2500 nm (V­SWIR); Spectral
Resolution of 3 nm @ 700 nm and 10 nm@ 1400/2100 nm; Spectral sampling (bandwidth) 1.4
nm @ 350­1000 nm and 1.1 nm @ 1001­2500 nm. All spectral readings were conducted in a
dark room and on the same day. To avoid light source oscillations and consequent variations
between readings, a battery powered no­break line was connected to the devices.

The light source was a 70­Watt halogen bulb lamp, positioned 15◦ from nadir, at a dis­
tance of 70 cm. The optical fiber probe sensor was placed 35 cm from the soil samples with an
objective lens of 8◦ (lens angle), positioned at nadir (0◦) in relation to the soil samples. Each
soil sample underwent 100 scans. During the scans, three 120◦ rotations were executed to at­
tain a homogeneous reading over the entire surface of each sample. At every 30 minutes, or
24 samples, the optimize and white reference were read according to equipment manufacturer
instructions.
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(a) Soil profile P32, images from left­right and spectrum figure from bottom­up, both represents the
horizons O, OB, Bi1, Bi2, BC.
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(b) Soil profile P77, images from left­right and spectrum figure from bottom­up, both represents the
horizons O1, O2, OB, Bi1, Bi2.

Figure 2.3: Reflectance of profiles P32(a) and P77(b) horizons, both classified as CAMBIS­
SOLO HÍSTICO Distrófico típico (SiBCS), equivalent to Histic Cambisols (WRBSRG).
Images show the flattening sample surface.
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2.5.3 Data Handling, Spectral Preprocessing, Covariates Selection

The spectroradiometer data (format file .asd) was converted in a plain text file (with 15
decimals after the comma), then, as data­table, associated to the contents of Al, Ca, H, K, Mg,
Na, N, P, and values of pH and TC data, from the wet chemistry laboratory analyses. To improve
the prediction results, two approaches were adopted. The first approach used in the spectral data
such as Continuum Removal (CR) (CLARK, 1999), Savitzky­Golay (SVG) (SAVITZKY; GO­
LAY, 1964) with different settings across the derivative, order polynomial and search window
(VASQUES et al., 2008), and Inverse of Reflectance to Factor of 104 (IRF4). The IRF4 was
obtained dividing 10,000 for each value of the reflectance spectrum. A conversion of spectral
data to absorbance by the ­log10 (reflectance) (ROSSEL et al., 2005) (AB­log) was also in­
cluded as a preprocessing (Table 2.1) (Figure 2.4). The second approach used techniques for
dimensionality reduction of spectral covariates, such as the Stepwise Algorithm by the Akaike
information criteria (stepAIC), which removed 1851 of the 2150 covariates, keeping∼14% (299
covariates). The second technique was the Removal of High Correlated Covariates (RHCC) by
the correlation matrix approach, which removed 480 covariates from the dataset keeping 1686.

Table 2.1: Preprocessing applied to spectral data from soil samples of the Itatiaia National Park.

Preprocessing Abbreviation 
Conversion to absorbance ­log10(R)  AB­log
Continuum Removal CR 
Inverse of Reflectance to Factor of 104 IRF4
Savitzky–Golay 1st derivative using a 2nd­order polynomial and search
window 9 SVG­1­2­9 

Savitzky–Golay 1st derivative using a 2nd­order polynomial and search
window 11 SVG­1­2­11 

Savitzky–Golay 1st derivative using a 2nd­order polynomial and search
window 11 + the Inverse of Reflectance to factor of 104 SVG­1­2­11 + IRF4 

Inverse of Reflectance to Factor of 104 + Savitzky–Golay 1st derivative
using a 2nd­order polynomial and search window 11 IRF4 + SVG­1­2­11

Savitzky–Golay 1st derivative using a 2nd­order polynomial and search
window 11 + Inverse of Reflectance to Factor of 104 + Noise Reduction
(from 434 nm)

SVG­1­2­11 + IRF4 + NR 434

Inverse of Reflectance to Factor of 104 + Savitzky–Golay 1st derivative
using a 2nd­order polynomial and search window 11 + Noise Reduction
(from 434 nm)

IRF4 + SVG­1­2­11 + NR 434

Savitzky–Golay 1st derivative using a 2nd­order polynomial and search
window 11 + Noise Reduction (from 434 nm) SVG­1­2­11 + NR 434

Inverse of Reflectance to Factor of 104 + Noise Reduction (from 434 nm)  IRF4 + NR 434

Seeking errors in the dataset (the 300 samples), we also tested the removal of outliers
with a Principal Component Analysis Location (PCAL), by taken 10 samples located outside
the standard deviation distance of five percent. A similar idea was used by Dangal et al. (2019),
which evaluated the model performance before and after removing the outlier samples.

The best results from the two approaches were combined then reapplied in the algo­
rithms. For example, after applying SVG we performed IRF4 to the result of SVG and vice­
versa, resulting in two different preprocessing SVG­1­2­11+IRF4 (SVG first, with IRF4) and
IRF4+SVG­1­2­11 (IRF4 first, with SVG) as displayed in Table 2.1 and Figure 2.4. Noise was
also identified and was removed with Noise Removal (350­433 nm) (NR), after being visually
identified in the spectral graphs as the initial (83) wavelengths of the IRF4 curve (Figure 2.4).

The dataset (wet chemistry laboratory and spectral combined) was randomly sorted once,
to avoid bias due closely samples from the same profile. The K­folds cross­validation method
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Figure 2.4: Visualization of main Spectral preprocessing curves: (A) ContinuumRemoval (ma­
genta); no treatment (raw spectrum) (green); absorbance (red); Inverse of Reflectance to
Factor of 104 (light green). (B) Savitzky­Golay first derivative (dark blue); Inverse of Re­
flectance to Factor of 104 + Savitzky­Golay first derivative (light blue); Savitzky­Golay
first derivative + Inverse of Reflectance to Factor of 104 (brown); Inverse of Reflectance
to Factor of 104 (light green). Notice, each curve fits its own y (reflectance) scale.

was implemented. The dataset was submitted to each preprocessing and technique, as defined
in Table 2.1. The data from wet chemistry remained unchanged, in other words, it was not
treated or converted using any sort of method, only the spectral data was managed through the
preprocessing. As a reference, the raw data (with no treatment) was also computed across the
models.

2.5.4 Artificial Neural Network (ANN)

The Artificial Neural Network (ANN) was initially developed in 1958 (ROSENBLATT,
1958) and was revised in the 1980s and ’90s. A literature review (ROSSEL et al., 2005) has
shown that ANN was not commonly applied for prediction of soil properties, PLSR is largely
used instead. One of the first applications of ANN for prediction of soil properties (DANIEL et
al., 2003) used different bandwidths, 10, 20, 50 and 100 nm.

To apply the ANN algorithm in this study each soil property with the correspondent
spectrum from the respective soil sample was scaled between zero (0) and one (1). To apply
the other algorithms (RF, PLSR and CB) data was not scaled. After that, the predicted data was
converted to the original scale to proceed with the validation.

The ANN consists of an input data layer (all available samples), a hidden layer(s) (of
which there may be one or more, in the case of the study, five hidden layers), and one output
layer. Combinations were tested, in this case, the number of neurons per layer were defined
by Fibonacci sequence, given by the Equation 2.5, where we use n between 7 to 2, giving 13,
8, 5, 3, 1 respectively. In other words, each number is found by adding up the two numbers
before it. Thus, the hidden layers are a combination of five layers containing 13­8­5­3­1 neurons
respectively. In this arrangement, each neuron was linked with all of the neurons in the next
layer, but had no linkage with others neurons in the same layer (Figure 2.5).
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The implemented ANN was the resilient backpropagation type, with R package neural­
net, through the following R command ann_model <- neuralnet(formula = form, data
= train_data, hidden = c(13, 8, 5, 3, 1), linear.output = TRUE), where the
ann_model is an object that contains the output ANN model (to be used in the prediction step
(further)); neuralnet is the R function for ANN (from R package neuralnet); formula =
form is an object that contains the working soil property + covariates (in this study, generally,
all and each spectral wavelengths, for example TC+W350+W351+W352+...+W2150+W2151);
data = train_data is the data used to train the model, which the model try to learn the
amount of used soil property (TC for example) from spectral data; hidden = c(13, 8, 5,
3, 1) the five hidden layers and the respective number of neurons, and the output layer; and
linear.output = TRUE is the model parameter associated with act.fct and logistic function.

Then, the soil properties predictions were performed with the R command fitted_ann
<- predict(ann_model, validation_data), where the fitted_ann contains the the va­
lues of each predicted property (for example TC); predict is a R “is a generic function for
predictions from the results of various model fitting functions. The function invokes particular
methods which depend on the class of the first argument” (R Core Team, 2019), this function
belongs to R stats package (one of the packages supplied in R base packages set). In this case,
the function was applied to a Machine Learning neuralnet object (argument) class; ann_model
as described earlier; validation_data is the data that contains only spectral data, where the
model tries to apply what was learned before to give the desired prediction. Then the result of
the prediction has to be compared with the actual values to assess (validate) the modeling.

Training and prediction, the algorithm steps, the case for ANN

To train the models, soil property + spectral data were added to the network (Figure 2.5,
step 1). This allowed the system to build a weighted connection balanced for the prediction (a
model). To perform the prediction, new data (spectral only) from the dataset was injected into
the model generating the predicted soil property (Figure 2.5, step 2). The result of the predicted
soil property is then placed alongside the observed values to assess the predictive capacity as
displayed along the coefficients in Tables 2.3, 2.4, and Figure 2.7 together with Figure 2.8.

The referred above training and prediction processes were repeated for each preproces­
sing tool, combined to covariate selection methods. Consecutively, these steps were applied for
the following algorithms. Detailed information about train and validation aspects are given after
the algorithms topics.

2.5.5 Random Forest (RF)

The Random Forest (RF) algorithm (BREIMAN, 2001) is based on regression and clas­
sification trees. It builds various regression or classification trees with bootstrap sampling (one
third approximately) of the input covariates and internal validation called out of bag (OOB) (LA­
WRENCE et al., 2006; NAWAR et al., 2017; DANGAL et al., 2019). The model presents the
average estimate of the trees for soil attributes prediction (continuous data) and more voted clas­
ses for soil types (categorical data). As for ANN and other algorithms, soil plus the covariate data
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Figure 2.5: Design of the Artificial Neural Network, for training (top, step 1) and predicting
(bottom, step 2).
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(spectral data) were used to train the RF models, and spectral data (only, without soil data) ap­
plied into the models to assess their predictive capacity. The Random forest were used as the fol­
lowing R command rf_model <- randomForest(form, data = trainData), where the
rf_model is the Random Forest model; randomForest is the R function for Random Forest
(from R package randomForest); form is the same form object as described above; and data =
trainData is the same training data as described above.

To predict, it was applied was fitted_rf <- predict(rf_model, newdata= vali
dation_data). This function is similar to the one described above, although it used the rf_model
(Random Forest model).

2.5.6 Partial Least Squares Regression (PLSR)

Partial Least Squares Regression (PLSR) is a multivariate regression technique widely
considered for a large number of applications in several fields such as spectral analysis of food,
agricultural products (LIU et al., 2010), and spectral study of soils (ROSSEL et al., 2005). PLSR
establishes the relationship between highly collinear multi­dimensional predictor variables and
the tested variable, thus, it selects the orthogonal factors to maximize the covariance between
predictor and response variables (DANGAL et al., 2019). The used R command is given by
the expression plsr_model <- plsr(formula= form, data= trainData, ncomp= 30),
where the plsr_model is the PLSR model; plsr is the R function for PLSR (from R pac­
kage pls); formula= form is the same form object as described above; data = trainData is
the same training data as described above; and ncomp= 30 is the the number of components of
the model.

The predict function applied was fitted_plsr <- predict(plsr_model, newdata
= validation_data). This function is similar to the one described above, although it used the
plsr_model (PLSR model).

2.5.7 Cubist (CB)

Cubist (CB) is a rule–based model used as an extension of model tree M5 (BASSER,
1992) that equates the need for accurate prediction with requirements for comprehensibility.
The performance of CB has proved to be superior to other machine learning techniques, and it
is simpler to understand since it is based on regression trees (NGUYEN et al., 2019; Rulequest
Research, 2019). The CB follows four steps (NGUYEN et al., 2019): i) separation of data
to grow a complete tree; ii) creation of a regression model at each node to prepare to pruning
and prediction; iii) pruning the tree to evade overfitting problem; and iv) smoothing the tree to
obfuscate the discontinuities limits caused by the splitting.

The used R command is given by the expression cb_model <- cubist(x= train
Data[, (spectral wavelengs)], y= trainData[ , current soil property], cubi
stControl(rules = 100, extrapolation = 15), committees = 1). The CB R algo­
rithm implementation does not use a form object as the previous ones, instead it is necessary to
make explicit the column on the data table where are the x and y; cb_model is the CB model;
cubist is the R function for cubist (from R package Cubist); x= trainData[, (spectral
wavelengths)] is the columns on the data table where the spectral wavelengths are placed;
y= trainData[ , current soil property] is the column on the data table where the cur­
rent modeling soil property are placed; cubistControl (rules = 100, extrapolation =
15), committees = 1) are rules: to define an explicit limit to the number of rules used, ex­
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trapolation: a number between 0 and 100: since Cubist uses linear models, predictions can be
outside of the range seen training set. This parameter controls how much rule predictions are
adjusted to be consistent with the training set; and committees: number of committee models
(e.g. boosting iterations).

The predict function applied was fitted_cb <- predict(cb_model, newdata= va
lidation_data), this function is similar to the one described above, although it used the
cb_model (CB model).

Since the main objective was to investigate the behavior of the spectral preprocessing,
then compare the improvement of the preprocessing on different models, they were tested and
applied with minimum model tuning, some of them close to the default parameters.

All the R commands and functions can be found in scripts format through the repositories
of the Author, with respective data as well.

2.5.8 Models Performance Assessment, Cross­validation Approach

To assess themodel’s performance and avoid biased validation, the k­fold cross­validation
was applied. The dataset was split into 10 folds (which means 10 groups) to perform cross vali­
dation, for this dataset each fold contains 30 samples. For every combination of preprocessing
and modeling algorithm, on the 300 samples, each algorithm was applied 10 times. In other
words, the training of 270 samples (9/10 of the total samples) and validating with 30 spare sam­
ples (1/10 of the total samples). This process was repeated until the algorithm predicted and
validated all of the 300 samples (10/10) without repeating any sample for the validation (PEJO­
VIĆ et al., 2018).

Across the 11 preprocessing, two (2) reduction of data dimensionality techniques, PCAL,
raw data (without spectral preprocessing) for the 4 machine learning models (ANN, RF PLSR
and CB), and 10 soil properties and the 10­split sampling (k­fold), a total of 6,000 models were
created along the raw and treated data. Since each dataset is composed for 10 folds, the assess­
ment (over the validated folds) was conducted as average over the 10 folds, then the 6,000 mo­
dels were evaluate per group of 10, presenting 600 cross­validated results, which are presented
in the Tables 2.3 (ranked the best preprocessing per soil property), 2.4 (ranked all preprocessing
per soil property), and Figures 2.7 and 2.8 (associated with Table 2.3). All the 600 groups can
be seen in Appendix A, Table S1 as supplementary material. Result of independent folds (for
TC, P and K) are shown in the Table 2.5 (ranked per fold name).

To evaluate the performance of predictionmodels, the RootMean Squared Error (RMSE),
coefficient of determination (R2) and the Ratio of Performance to Deviation (RPD) were cal­
culated based on the average of the folds. All of the coefficients were calculated as an average
across the folds. RPD is given by the ratio of standard deviation to the RMSECV (Root Mean
Square Error of Cross­validation) or RMSEP (Root Mean Square Error of Prediction) between
measured and predicted values (CHANG; LAIRD, 2002). Three classes of RPD are defined,
where RPD>2 are the models that can predict well the soil property in analysis, RPD between
1.4 and 2 as an intermediate, and RPD<1.4 with no prediction ability (CHANG; LAIRD, 2002;
GOMEZ et al., 2008). The models were assessed essentially by the R2, RMSE, bias and RPD.

2.5.9 Software

The software used to conduct the spectral readings was the ASD Rs3®.
The data processing and predictions were undertaken with R (R Core Team, 2019),
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with the packages: base R (R Core Team, 2019) and dplyr (WICKHAM et al., 2019b) for
data manipulation; rstudioapi (USHEY et al., 2019) to automatically set working directory;
caret (WING et al., 2019) to find high correlated covariates; prospectr (STEVENS; RAMIREZ­
LOPEZ, 2014) to visualize spectral data and apply preprocessing tools such as Savitzky­Golay
and continuum removal; randomForest (BREIMAN et al., 2018) for Random Forest, Cubist
(KUHN; QUINLAN, 2018; Rulequest Research, 2019) for Cubist, pls (MEVIK et al., 2019)
for PLSR and neuralnet (FRITSCH et al., 2019) for ANN predictor algorithms; stats from base
R (R Core Team, 2019) for predict function; MASS (RIPLEY, 2019) for stepAIC application;
ithir (MALONE, 2018) for metrics; RColorBrewer (NEUWIRTH, 2014), hexbin (CARR et al.,
2019), grid (MURRELL, 2014), and ggplot2 (WICKHAM et al., 2019a) for graphs; DMwR
(TORGO, 2013) to unscale the data after ANN; and stringr (WICKHAM, 2019) to access the
results.
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2.6 RESULTS

2.6.1 Laboratory Measured Soil Properties

The summary of statistics for the soil properties measured using conventional laboratory
chemistry methods are presented in Table 2.2 and data distribution in Figure 2.6.

Table 2.2: Descriptive statistics for properties of soils sampled at the upper part of Itatiaia
National Park, Rio de Janeiro State.

Soil property Unit Ns Mean SD Median Min Max Skew Kurtosis SE
Al3+ cmolc dm−3 300 2.01 1.48 1.8 0 9.2 1.5 3.57 0.09
Ca2+ cmolc dm−3 300 0.14 0.26 0.09 0 2.55 5.75 42.45 0.02
H+ % 300 1.93 0.74 1.88 0.33 4.37 0.47 0.19 0.04
K+ cmolc dm−3 300 0.14 0.15 0.08 0.01 1.26 3.06 14.64 0.01
Mg2+ cmolc dm−3 300 0.5 0.3 0.42 0 1.67 1.53 2.26 0.02
N+ % 300 0.36 0.35 0.25 0 1.85 1.43 1.93 0.02
Na+ cmolc dm−3 300 0.03 0.05 0.03 0 0.8 10.95 149.19 0
P ppm 300 7.33 8.47 4.81 0.19 97.51 5.03 43.28 0.49
pH unitless 300 4.5 0.4 4.5 3.24 5.72 0.08 0.09 0.02
TC % 300 5.9 5.62 3.99 0.24 29.48 1.38 1.71 0.32

Al: aluminum; Ca: calcium; H: hydrogen; K: potassium; Mg: magnesium; N: nitrogen; Na: sodium; P: phospho­
rus; TC: total carbon; Ns: number of samples; SD: standard deviation; SE: standard error.

Figure 2.6: Density plot of properties of soils sampled at the upper part of Itatiaia National Park,
Rio de Janeiro State.
Al: aluminum; Ca: calcium; H: hydrogen; K: potassium; Mg: magnesium; N: nitrogen; Na: sodium; P:
phosphorus; TC: total carbon (Properties units according to Table 2.2).

The number of samples (Ns) was equal to 300 for all properties. Most of them deviate
from normal distribution (Figure 2.6 and Skew from Table 2.2), except for H and pH values
which presented skew and Kurtosis close to zero, and the pH is log­normally distributed.
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2.6.2 Assessment of the Models

To evaluate the performance of predictivemodels, the RootMean Squared Error (RMSE),
coefficient of determination (R2) and Ratio of Performance to Deviation (RPD) were calculated
as the average of the folds. Of the 600 cross­validated groups, the best model associated with
the best preprocessing, was the CB for TC with R2 of 0.85, RPD of 2.87 (highest), followed
by PLSR for N with R2 of 0.82 and RPD of 2.65, and RF for Al with R2 of 0.54 and RPD of
1.54 (Table 2.3). For contents of TC, Al, N, pH the RF presented the best association among
the preprocessing tools giving higher ranking results 36 times, compared to 21 times for CB,
3 for PLSR, and none (0) for ANN (Table 2.4). For pH values the preprocessing significantly
increased the performance bringing the R2 from 0.096 to 0.36 (in comparison with no spectral
treatment), followed by Al from 0.36 to 0.54. In general, the IRF4 and its association with
SVG­1­2­11 improved the performance of the machine learning, followed by SVG­1­2­11 and
their combination with NR (Table 2.4). Compared with others preprocessing, the widely used
AB­log was midway favorable to TC with a slight improvement for N and less for Al values.

Table 2.3: Outstanding preprocessing with the associated models for each property of soils sam­
pled at INP.

Preprocessing Model Soil property* R2 MSE RMSE bias RPD
IRF4 + SVG­1­2­11 + NR 434 rf Al 0.536 0.944 0.954 0.037 1.541
IRF4 cb H 0.672 0.173 0.411 ­0.034 1.817
SVG­1­2­11 + IRF4 + NR 434 rf K 0.275 0.017 0.118 0.003 1.244
SVG­1­2­11 rf Mg 0.194 0.074 0.267 0.014 1.148
IRF4 + NR 434 plsr N 0.819 0.018 0.13 ­0.005 2.649
SVG­1­2­11 + IRF4 + NR 434 rf P 0.072 66.896 7.436 0.137 1.07
SVG­1­2­11 rf pH 0.363 0.096 0.309 ­0.005 1.286
IRF4 cb TC 0.852 3.998 1.958 ­0.044 2.867

*Ca and Na are not shown in the table due to the very poor results. The description of each preprocessing is
according to Table 2.1; rf: random forest; cb: cubist; plsr: Partial Least Squares Regression; TC: total carbon; R2:
coefficient of determination; MSE: mean squared error; RMSE: root­mean­square error; RPD: ratio of performance
to deviation. The coefficients units correspond to Table 2.2.

The reduction of dimensionality technique stepAIC, for pH and Al, in comparison with
no preprocessed spectrum, weakly improved the prediction in most of the cases. Although con­
sidering that the model uses only 299 wavelengths (covariates) it still performed satisfactorily
when considering the fact that it uses only 14% of all spectral data. As observed for the N va­
lues, in some cases, some preprocessing decreased the performance of the model, for example
CR for TC (Table 2.4). The validation graphs of the properties Al, H, K, Mg, N, P, pH and TC
are in Figures 2.7 and 2.8, according to the models and preprocessing of Table 2.3. The 600
cross­validated groups are presented as supplementary materials (Table S1).

Table 2.4: Selected cross­validated groups of the preprocessing with associated models for va­
lues of TC, N, Al and pH of soils from the INP.

Preprocessing Model Soil property R2 MSE RMSE bias RPD

IRF4 cb TC 0.852 3.998 1.958 ­0.044 2.867
IRF4 + SVG­1­2­11 rf TC 0.841 4.753 2.112 ­0.038 2.65
IRF4 + SVG­1­2­11 + NR 434 rf TC 0.84 4.749 2.113 ­0.027 2.649

Table 2.4 – continued on the next page
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Table 2.4 – continued from previous page

Preprocessing Model Soil property R2 MSE RMSE bias RPD

SVG­1­2­11 rf TC 0.836 4.718 2.123 0 2.627
SVG­1­2­9 rf TC 0.833 4.84 2.147 0.014 2.604
SVG­1­2­11 + NR 434 rf TC 0.831 4.854 2.143 0.024 2.632
AB­log cb TC 0.829 4.717 2.121 ­0.14 2.652
SVG­1­2­11 + IRF4 rf TC 0.826 5.047 2.194 ­0.013 2.539
SVG­1­2­11 + IRF4 + NR 434 rf TC 0.824 5.006 2.183 0.014 2.569
IRF4 + NR 434 plsr TC 0.824 4.965 2.181 ­0.055 2.559
no preprocessing cb TC 0.824 5.128 2.153 ­0.059 2.667
CR rf TC 0.81 5.581 2.295 0.026 2.442
stepAIC cb TC 0.803 5.339 2.266 ­0.052 2.466
PCAL cb TC 0.793 5.518 2.297 ­0.148 2.338
RHCC cb TC 0.789 6.179 2.41 ­0.166 2.338
IRF4 + NR 434 plsr N 0.819 0.018 0.13 ­0.005 2.649
IRF4 + SVG­1­2­11 + NR 434 rf N 0.815 0.019 0.137 ­0.002 2.466
IRF4 + SVG­1­2­11 rf N 0.812 0.02 0.138 ­0.002 2.446
AB­log plsr N 0.798 0.021 0.143 ­0.003 2.37
SVG­1­2­11 rf N 0.797 0.021 0.142 0.003 2.382
SVG­1­2­9 rf N 0.791 0.021 0.143 0.003 2.37
SVG­1­2­11 + IRF4 rf N 0.787 0.022 0.146 0 2.321
SVG­1­2­11 + NR 434 rf N 0.786 0.021 0.144 0.005 2.375
SVG­1­2­11 + IRF4 + NR 434 rf N 0.777 0.022 0.148 0.002 2.318
RHCC cb N 0.769 0.025 0.153 ­0.008 2.265
CR rf N 0.755 0.026 0.157 0.004 2.166
no preprocessing cb N 0.743 0.028 0.162 ­0.009 2.141
IRF4 cb N 0.731 0.03 0.161 ­0.005 2.232
stepAIC cb N 0.728 0.028 0.164 ­0.009 2.085
PCAL cb N 0.701 0.031 0.173 ­0.004 1.89
IRF4 + SVG­1­2­11 + NR 434 rf Al 0.536 0.944 0.954 0.037 1.541
IRF4 + SVG­1­2­11 rf Al 0.527 0.967 0.965 0.039 1.527
SVG­1­2­11 + NR 434 rf Al 0.522 0.97 0.966 0.042 1.529
IRF4 + NR 434 cb Al 0.517 0.935 0.961 0.003 1.514
SVG­1­2­11 rf Al 0.513 0.987 0.974 0.049 1.52
SVG­1­2­9 rf Al 0.511 0.981 0.973 0.045 1.516
SVG­1­2­11 + IRF4 + NR 434 rf Al 0.506 1.028 0.992 0.032 1.485
SVG­1­2­11 + IRF4 rf Al 0.487 1.071 1.012 0.034 1.459
AB­log cb Al 0.431 1.135 1.049 ­0.079 1.405
stepAIC cb Al 0.423 1.152 1.062 ­0.117 1.371
IRF4 cb Al 0.419 1.078 1.027 ­0.078 1.449
CR rf Al 0.388 1.225 1.097 0.062 1.322
no preprocessing cb Al 0.362 1.264 1.111 ­0.072 1.319
RHCC cb Al 0.261 1.402 1.161 ­0.076 1.295
PCAL rf Al 0.249 1.516 1.218 0.056 1.203
SVG­1­2­11 rf pH 0.363 0.096 0.309 ­0.005 1.286
SVG­1­2­11 + NR 434 rf pH 0.352 0.098 0.312 ­0.007 1.278

Table 2.4 – continued on the next page
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Table 2.4 – continued from previous page

Preprocessing Model Soil property R2 MSE RMSE bias RPD

SVG­1­2­9 rf pH 0.352 0.098 0.312 ­0.006 1.277
IRF4 + SVG­1­2­11 + NR 434 rf pH 0.347 0.098 0.311 0 1.284
IRF4 + SVG­1­2­11 rf pH 0.346 0.098 0.312 0 1.28
SVG­1­2­11 + IRF4 + NR 434 rf pH 0.329 0.101 0.317 ­0.005 1.255
SVG­1­2­11 + IRF4 rf pH 0.322 0.102 0.319 ­0.005 1.249
IRF4 cb pH 0.22 0.117 0.34 ­0.02 1.18
IRF4 + NR 434 cb pH 0.21 0.118 0.342 ­0.007 1.172
CR rf pH 0.18 0.124 0.351 0 1.133
AB­log cb pH 0.123 0.134 0.362 ­0.014 1.115
PCAL cb pH 0.097 0.141 0.373 ­0.015 1.087
stepAIC rf pH 0.097 0.137 0.369 0.004 1.082
no preprocessing rf pH 0.096 0.139 0.37 0.004 1.08
RHCC rf pH 0.071 0.141 0.374 0.003 1.067

The description of each preprocessing is on Table 2.1; rf: random Forest; cb: Cubist; plsr: Partial Least Squa­
res Regression; TC: Total Carbon; R2: coefficient of determination; MSE: Mean Squared Error; RMSE: Root
Mean Square Error; RPD: Ratio of Performance to Deviation. The coefficients units correspond to Table 2.2.

The highest prediction with the best associated preprocessing for each soil property with
the top ranked model is presented at Table 2.3. Following the same line, the best predicted pro­
perties (TC, N, AL, pH), leaving out K, Mg, and P, are shown in Table 2.4, and they are ranked
according to the higher R2 per property. The first line per property shows the most accurate
result for the preprocessing with the associated model. All the preprocessing methods are dis­
played per property, although the model displayed is just the top one per preprocessing. P and
K are displayed in Table 2.5 with the individual values of each fold. Table S1 is alphabetically
organized according to: Preprocessing, Model, Soil property.

The common (and simplest) external validation was previously tested several times, with
random selection of data: 70% for training and 30% for validation. Each random selection ended
in a more or less homogeneous/heterogeneous groups of each analyzed soil properties, which
turns in a very different prediction accuracy, for example varying the R2 from 0.60 to 0.95 each
time the algorithm performed the prediction. Even the k­fold cross­validation technique keeps
the sample groups fixed into the folds, differently from external validation, this variability in
the prediction accuracy can be observed within the folds of TC values (Table 2.5), it is observed
that the R2 validation coefficient ranges from 0.78 to 0.95. For the 10th fold the RPD is highest,
and the best MSE and RMSE remains in fold 6. For P and K values, fold 8 has a huge difference
in the coefficients. While the average of R2 for P values is 0.072, in fold 8 it is 0.35, and for K
we have an R2 average of 0.275, while in fold 8 it is 0.674. The fold spectral behavior can be
seen in Figure 2.9, (folds from 1 to 7 and 9 to 10 in orange, and 8 in blue).

As consequence of the work, a standard operational procedure was developed to use the
spectroradiometer on the laboratory of radiometry (LabSpec) at the Federal Rural University of
Rio de Janeiro. Which can be found on the repositories of the Author. The data and R code, can
be found also on the same repositories.
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Table 2.5: The coefficients within the 10 folds for TC,
P and K.

Folds R2 MSE RMSE bias RPD
TC.1 0.814 7.209 2.685 0.045 2.36
TC.2 0.899 3.947 1.987 ­0.062 3.193
TC.3 0.894 3.203 1.79 ­0.433 3.13
TC.4 0.781 7.54 2.746 0.055 2.174
TC.5 0.843 3.005 1.734 0.363 2.571
TC.6 0.9 2.486 1.577 0.047 3.218
TC.7 0.886 2.83 1.682 ­0.155 3.018
TC.8 0.87 4.353 2.086 ­0.26 2.822
TC.9 0.682 2.794 1.672 0.541 1.804
TC.10 0.946 2.617 1.618 ­0.578 4.377
P.1 ­0.163 79.717 8.928 ­0.819 0.943
P.2 ­0.207 37.404 6.116 1.477 0.926
P.3 0.222 34.459 5.87 0.736 1.153
P.4 0.18 56.343 7.506 0.204 1.123
P.5 0.272 24.237 4.923 0.177 1.192
P.6 ­0.003 40.109 6.333 0.869 1.015
P.7 ­0.023 291.659 17.078 ­1.512 1.006
P.8 0.352 34.759 5.896 ­0.659 1.264
P.9 ­0.023 24.13 4.912 0.71 1.005
P.10 0.108 46.141 6.793 0.185 1.077
K.1 ­0.034 0.058 0.24 ­0.041 1
K.2 0.27 0.006 0.08 0.006 1.19
K.3 0.141 0.008 0.091 0.033 1.097
K.4 0.35 0.026 0.161 ­0.007 1.261
K.5 0.163 0.025 0.158 ­0.021 1.112
K.6 0.3 0.006 0.076 0.033 1.215
K.7 0.089 0.006 0.08 0.033 1.066
K.8 0.674 0.005 0.071 ­0.001 1.783
K.9 0.576 0.004 0.063 0.024 1.561
K.10 0.225 0.026 0.16 ­0.024 1.155
TC: Total Carbon; R2: coefficient of determination; MSE: Mean
Squared Error; RMSE: Root Mean Square Error; RPD: Ratio of
Performance to Deviation. The coefficients units correspond to Ta­
ble 2.2. Algorithms and preprocessing in this table: For TC, IRF4
with CB model; for P and K (SVG­1­2­11 + IRF4 + NR 434) with
RF model.
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Figure 2.7: Prediction of Al, H, K, Mg, N and P. Displays only the top ranked predictions for
each property along the best preprocessing with the best associated model, according to
Table 2.3. Transversal line is the fitted correspondent model line, according to Table 2.3.
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Figure 2.8: Prediction of pH and TC values. Displays only the top ranked predictions for each
property along the best preprocessing with the best associated model, according to Table
2.3. Transversal line is the fitted correspondent model line, according to Table 2.3.

Figure 2.9: Spectral plots of soil samples from the upper part of Itatiaia National Park, with
IRF4 preprocessing. Fold 8 is in blue.
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2.7 DISCUSSION

The soil property that was best predicted was the TC, with R2 0.85, RMSE 1.96, bias
­0.04 and RPD of 2.87 (Figures 2.7 and 2.8). The other properties showed bias close to zero with
the exception of values of P, which was 0.137. From the dimensionality reduction (Table 2.4),
the RHCC, and especially stepAIC showed that the spectral resolution is not the main driver
that improves the prediction of soil properties, which is in agreement with Gomez et al. (2008),
but it still allowed the models to reach R2 0.8, RMSE 2.26, bias ­0.052 and RPD 2.47 for TC
with CB model (Table 2.3). CR was similar to RF for TC giving R2 0.81, RMSE 2.30, bias
0.026 and RPD of 2.44. In addition, the RHCC and stepAIC reduced the processing time, and
thus machine power consumption. Differently from Dangal et al. (2019) the removal of outliers
did not improve the prediction; however, this procedure may relevant when working with large
databases. The PCAL with 5% removed still provided satisfactory results max of R2 0.79 and
RPD of 2.33.

The Sawitzky–Golay filter improved the prediction of the properties Al, K, Mg, P and
pH (VASQUES et al., 2008; KOPAČKOVÁ et al., 2017), with similar results for ten out of
the seventeen soil properties in central Amazon soils (PINHEIRO et al., 2017) and for South
Eastern Australia (TANG et al., 2020). Our results show that the setting of SVG­1­2­11 provided
higher coefficients in comparison with SVG­1­2­9. The application of IRF4 (combined or alone)
benefited the models and increased the predictive capacity for 6 of the 8 predicted properties in
comparison with the raw spectra (Table 2.3, 2.4 and S1), which are: Al, H, K, N, P, and TC.
IRF4 alone and combined performed better than the commonly used preprocessing alone.

Close predictions of TC were obtained with ANN and with a bandwidth of 10 nm (DA­
NIEL et al., 2003), the bandwidth had a role in the prediction capacity, but it was not a key
feature (GOMEZ et al., 2008). Large spectral data and different ANN strategy could rise the
ANN potential prediction (PADARIAN et al., 2019). Testing a series of spectral preprocessing
Dotto et al. (2018) concluded that CR had the highest performance associated to PLSR and RF,
followed by SVG to RF.

Machine learning such as RF and CB showed good predictive capacity, and the results
using ANN may be further improved with a larger dataset. A review of methods and results
(ROSSEL et al., 2005) show better prediction values with a variety of algorithms aside of ANN;
where Chang et al. (2001) reached a R2 of 0.89 using PLSR for TC in V­SWIR, which is a
procedure widely applied in the literature. Using Convolution neural Networks, Padarian et al.
(2019) pointed a possible limitation of PLSR. In this study we found, overall, that the Cubist
model and Random Forest presented higher prediction capacity for TC. Then in accordance with
Tang et al. (2020), along algorithms comparison, CB has also presented better performance than
PLSR to predict soil properties.

Certain spectral preprocessing for certain properties can decrease the model performance
compared with no preprocessing, as observed for N (IRF4 (alone), stepAIC, PCAL), and TC
(CR, stepAIC, PCAL, RHCC) (Table 2.4). In the case of TC, because it absorbs relatively
equally across V­SWIR wavelengths, it effectively impacts the continuum rather than specific
absorption features. In this case, there is a physical reason to expect that CR might remove more
signal than noise. The reduction of data dimensionality techniques (stepAIC, RHCC) generally
decreases the performance of the models due to the loss of information from specific removed
bands.

Despite a small variability in internal learning of machine algorithms on each run, the
random selection data for calibration and validation of the models can produce from slightly to
considerably different results among the folds, as observed for the properties TC, P, and K (Table
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2.5). This effect can be dissipated with larger datasets. In terms of managing the data variability
within the dataset, the k­fold cross validation presented consistent coefficients (Tables 2.3 and
2.4). Since they are given by the average of the coefficients across the folds, no matter how
many times the process is repeated, the prediction confirmed by the validation coefficients is
more stable and reliable than the simpler (commonly applied) external validation (e.g. 70/30).
It is recommended to consider the spatial clusterization when selecting the random samples as
Pejović et al. (2018), and it can lead to more stable results coefficients because the selected
samples are spatially distributed and balanced.

The variation on prediction assessment coefficients can be observed inside the folds (Ta­
ble 2.5), and for the reasons mentioned previously it is possible to observe that the models per­
formed very differently for each fold. Supported by the visual assessment of this fold (Figure
2.9) where the spectral behavior of IRF4 folds from 1 to 7 and 9 to 10 in orange, with the fold 8
illuminated in blue, which showed less reflectance heterogeneity (from 950 to 2150 nm). This
points to a better prediction for P and K inside fold 8 with the machine learning algorithms.
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2.8 CONCLUSIONS

The soil properties, TC and N presented the best prediction capacity, followed by H and
Al, with the use of V­SWIR and the prediction algorithms ANN, RF, PLSR, CB. The pH had the
highest increment with the SVG­1­2­11 preprocessing comparing with raw spectra. As for the
preprocessing, each soil property had the prediction potential increased by a specific spectral
preprocessing. In this way, globally SVG plus associations increased the potential for predic­
tion. For TC, IRF4 outperformed the commonly used preprocessing, including SVG, similarly,
IRF4+NR434 outperformed SVG for N. The combination of both with NR also showed good
responses from the algorithms. For some preprocessing of soil properties, such as CR for TC
and IRF4 (alone) for N, the preprocessing decreased the potential for prediction in comparison
with the non­treated (raw) spectra. Without spectral preprocessing (on raw spectral data), the
CB model showed the good prediction capacity, followed by and RF.

IRF4 was the top ranked preprocessing for N values when combined with NR. And IRF4
was the best for TC (R2 0.85), and also raises the prediction of H (R2 0.67), both using CB.
This is followed by PLSR for N and RF for Al. The algorithm most present among the higher
predicted valueswas RF (5 out of 8). The IRF4 technique is first time introduced in spectroscopy,
compared with the traditional preprocessing, it is very simple to apply with no tuning needed. It
is recommended more studies to confirm the potential of IRF4. Alone and associated with other
spectral preprocessing.

The k­fold cross validation provided consistent and reliable coefficient indicators. The
spectral data heterogeneity within the folds tends to decrease with the larger datasets, raising the
prediction capacity.

Considering that soil carbon is an indicator of soil health, quality and degradation, the
results obtained from the applied spectral soil properties prediction techniques show potential
of fast environmental assessment. In this sense the techniques can contribute for the Itatiaia
National Park management and monitoring.

The V­SWIR techniques has potential to contribute predicting soil properties in other
areas of Atlantic Forest and similar environments. The good correlation with V­SWIR indicates
a potential for a fast monitoring of soil properties, such as organic carbon. They can be further
associated to the environmental orbital remote sensing, especially in regions with limited access
such as the INP.
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3 CAPÍTULO II

SUBSURFACE HYPERSPECTRAL IMAGES, A STRONG
INTEGRATION BETWEEN PROXIMAL SOIL SENSING AND DIGITAL

MAPPING OF SOIL PROPERTIES
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3.1 RESUMO

O Parque Nacional do Itatiaia (INP) está localizado ao sul do estado do Rio de Janeiro, na fron­
teira com os estados de Minas Gerais e São Paulo, na região sudeste do Brasil. Sendo uma
unidade de conservação, o INP é área de referência para estudos ambientais no Bioma Floresta
Atlântica. Pelo seu relevo montanhoso, com acesso difícil e trilhas limitadas, além de aflo­
ramentos de rochas dominantes na parte alta do INP, o uso de ferramentas de Sensoriamento
Remoto (RS, do inglês Remote Sensing) pode auxiliar o Mapeamento Digital de Solo (DSM,
do inglês Digital Soil Mapping). Técnicas de RS que envolvem comprimentos de onda visí­
veis, infravermelho próximo e infravermelho de onda curta (Vis­NIR­SWIR ou simplesmente
V­SWIR) são aplicáveis para a predição espacial de propriedades do solo. O objetivo do estudo
foi combinar técnicas de RS, como o Sensoriamento Remoto Proximal (PSS, do inglês Proximal
Soil Sensing), ao DSM para predizer espacialmente o conteúdo de Carbono Total (TC) dos so­
los no INP. Foram utilizadas três cenas de imagens hiperespectrais do sensor CHRIS (Compact
High Resolution Imaging Spectrometer) embarcado no satélite PROBA (Project for On Board
Autonomy). As imagens de 62 bandas (411 a 997 nm, referente ao meio da primeira e última
bandas, respectivamente) foram corrigidas quanto a ruídos, striping, correções geométricas e
atmosféricas. De posse dessas imagens CHRIS, associadas a covariáveis de relevo e imagens
RapidEye, foi feita a predição de TC, atingindo coeficiente de determinação (R2) de 0,33; en­
quanto que excluindo imagens CHRIS foi obtido R2 de 0,32. Essas imagens foram combinadas
com os espectros proximais obtidos de material da primeira camada do solo, em 84 pontos amos­
trados na parte alta do INP. Desta forma, foi possível produzir imagem da subsuperfície do solo,
em outras palavras, uma imagem hiperespectral de subsuperfície. Com essas imagens em for­
mato raster, a predição de TC apresentou R2 de 0,58, ou seja, incremento de 75% na predição
quando comparada ao DSM sem esta etapa. Essa técnica eliminou os efeitos da interferência at­
mosférica e da vegetação na reflectância do solo. Esses resultados trazem a primeira integração
efetiva entre PSS e DSM, nomeado pelo autor de Mapeamento Hiperespectral de Solos (HSM,
em inglês Hyperspectral Soil Mapping). Essa correlação entre as técnicas V­SWIR, imagens
hiperespectrais e propriedades do solo, pode ser amplamente aplicada no mapeamento das pro­
priedades do solo, sendo útil para fins agrícolas e para monitoramento ambiental remoto. Este
último ainda mais relevante em áreas como o INP.

Palavras­chave: PSS+DSM. Métodos de Mapeamento. Espectrorradiometria.
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3.2 ABSTRACT

Itatiaia National Park (INP) is located in the south of the state of Rio de Janeiro on the border
with the states of Minas Gerais and São Paulo, in the southeastern region of Brazil. As a conser­
vation unit, the INP is a reference area for environmental studies in the Atlantic Forest Biome.
Due to the mountainous relief, with difficult access and limited trails, besides rock outcrops,
manly in the upper part of INP, the use of Remote Sensing (RS) tools can assist the Digital
Soil Mapping (DSM). Such RS techniques involving the visible, near­infrared and short­wave
infrared (Vis­NIR­SWIR, or simply V­SWIR) wavelengths, are applicable for spatial prediction
of soil properties. The objective of the study was to combine RS techniques, such as Proximal
Soil Sensing (PSS), and DSM to spatially predict the content of total carbon (TC) in the soils of
INP. Three scenes of hyperspectral images from the space platform Project for On Board Auton­
omy (PROBA), and the sensor Compact High Resolution Imaging Spectrometer (CHRIS) were
used. The image of 62 bands (411 to 997 nm, referring to the middle of the first and last bands,
respectively) were corrected for noise, striping, geometric and atmospheric corrections. TC was
predicted using the CHRIS images, associated with relief covariates and RapidEye images, and
the coefficient of determination (R2) of 0.33; while without CHRIS images a R2 of 0.32 was
obtained. These images were combined with the proximal spectra obtained from soil samples
taken from the first layer of 84 points in the upper part of INP. In this way, it was possible to
produce an image of the subsurface soil, in another words, a subsurface hyperspectral image.
With these raster images, it was possible to obtain a prediction of TC with R2 of 0.58, which is
a gain of 75% in comparison with the Digital Soil Mapping without this step. This technique
eliminated the interference of atmosphere and vegetation on soil reflectance. These results bring
the first strong integration between PSS and DSM, named by the author as Hyperspectral Soil
Mapping (HSM). This correlation between V­SWIR techniques, hyperspectral images and soil
properties, can be widely applied for mapping soil properties, being useful to agricultural pur­
poses and remote environmental monitoring. This last even more relevant in areas such as the
INP.

Keywords: PSS+DSM. Mapping Methods. Spectroradiometry.
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3.3 INTRODUCTION

The land coverage, mainly by various types of vegetation, is one of the site characteristics
that can diminish the capacity of the models to predict soil properties. The Digital Soil Mapping
(DSM) techniques  apply various methods and procedures enabling to minimize this effect th­
rough the use of covariates like the Digital Elevation Model (DEM) with its terrain derivations
(for example slope and northernness), geology, and geomorphology, and, spectral reflectance
bands from satellite imagery or Proximal Soil Sensing (PSS). Thus, researches and develop­
ments to find how new covariates can improve the DSM are very important (MCBRATNEY et
al., 2003).

One definition for DSM is “The creation and population of spatial soil information sys­
tems by numerical models inferring the spatial and temporal variations of soil types and soil
properties from soil observation and knowledge from related environmental variables” (LAGA­
CHERIE et al., 2007). In other words, DSM applies geospatial techniques through mathemati­
cal models with computational tools to build a spatial relation among the list of chosen (spatial)
covariates to generate a map of soil classes or attribute(s). The role and experience of the pe­
dologist is extremely important to go along with the model, in order to interpret and deliver
realistic results. It is noteworthy that, in the DSM, ∼71 covariates can be chosen among the
pool, from those, 48 are derived from DEM (COELHO et al., 2019).

The list of covariates is usually linked with soil­forming factors such as climate, or­
ganisms, relief, parent material, and time, as in the soil function proposed by Jenny (1941).
Although the DSM went beyond and uses the scorpanmodel, which is a Jenny­like formulation
for quantitative descriptions of relationships between soil and other spatially referenced factors.
It is represented as – Sc,a = {s, c, o, r, p, a, n}, where the soil class (Sc) or soil attribute (Sa) are
expressed by: s: soil, other properties of the soil at a point; c: climate, climatic properties of
the environment at a point; o: organisms, vegetation or fauna or human activity; r: topography,
landscape attributes; p: parent material, lithology; a: age, the time factor; n: space, spatial
position (MCBRATNEY et al., 2003).

The goal of a soil survey (data where maps are deriving from) is to subset a heteroge­
neous area in (more) homogeneous sections, with less variability according to soil attributes
and to distinguish soil classes (IBGE, 2015). Itatiaia National Park (INP) is characterized by
mountainous relief and the upper plateau has land cover classes ranging from dense forest to
sparse vegetation, bare soil and rock outcrops, stratified according to the altitude. Therefore,
the non­homogeneous features of INP bring more variables to account for soil mapping, and
this complexity makes the INP to be an appropriate site to test new methods and to create cova­
riates that may improve soil mapping.

The Total Carbon (TC) content can be used as a proxy to assess the soil health and quality
(LAL, 2016) and it is a relevant variable for environmental monitoring. This soil property also
has one of the best correlations in studies using Remote Sensing (RS) techniques (GALVÃO;
VITORELLO, 1998). The INP has restricted access within the upper part of the park, and the
locomotion is mainly by uneven and long trails. Due to local climate and elevation, the soils
have very high TC for tropical standards, reaching up to values of 29,5% of organic carbon
(COSTA et al., 2020). Thus, the RS techniques may provide the appropriate tools to assist in
DSM for spatial prediction of soil properties, such as TC. Techniques involving the visible,
near­infrared and short­wave infrared (Vis­NIR­SWIR, or simply V­SWIR) wavelengths are
also proved methods for soil analysis (BOWERS; HANKS, 1964; XIE; LI, 2016; ADELINE et
al., 2017; KOPAČKOVÁ et al., 2017), and it is projected that under some circumstances they
may even replace the wet chemistry analysis.
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In the range of V­SWIR, the PSS (few centimeters from reading surface) has a very
high spectral resolution and broader spectral range in comparison with orbital images. In the
laboratory, with no external interference, the readings are very consistent, but there is a lack of
spatial coverage. In the field, each point has to be measured individually. On the other hand, the
spectral part often used for DSM has the entire area structured by pixels, usually called raster
image or orbital image (hundreds of kilometers from the earth surface). Although, the satellite
image lacks where PSS has strength, spectral resolution, and very low ambient interferences.
The combination of PSS with DSM opens a possibility for a new set of covariates for predicting
soil properties, mainly when using the so called ­ Subsurface Hyperspectral image, with its
numerous bands.

To choose the best sensor for a given project it is important to compare the specifications
of the different instruments. The orbital sensor Compact High Resolution Imager (CHRIS) from
the space platform Project for On Board Autonomy (PROBA) satellite has 36 meters of spatial
resolution, 62 bands with spectral range from 411 to 997 nm (Vis and part of NIR, at the middle
of the first and last bands respectively). The wavelengths (middle) of each 62 CHRIS bands
can be found in the item 3.4.7. This equipment is in the category of Hyperspectral sensor,
being currently a good option to develop the combination of PSS with DSM due to its spectral
resolution. The Proximal Sensor ASD FieldSpec 4, has no spatial resolution, then one point can
be used as one pixel at each scan with very high spectral resolution. In this regard comes the
satellite image strength, many readings at once, spatial resolution expressed by the pixels. The
spectrordiometer (proximal sensor) has a spectral range from 350 to 2500 nm (V­SWIR) with
smalls bandwidth 1.4 nm @ 350­1000 nm and 1.1 nm @ 1001­2500 nm.

Many studies have used PSS to enhance the prediction capacity through calibration, for
example, a temporal series from Landsat 5 was created by the extraction of the bare soil pixels
across the time to compose a synthetic image (DEMATTÊ et al., 2018; GALLO et al., 2018;
MENDES et al., 2019; PADILHA et al., 2020). As a possible covariate the bare ground images
can be used (WADOUX et al., 2020). In similar approach spectral­temporal response surface
was applied by Lamichhane et al. (2019).

The motivation of this study originates from the need to improve the spatial prediction
of soil properties and thus to enhance DSM through the development of the Hyperspectral Soil
Mapping (HSM), especially in regions such as INP with difficult access and, consequently, hard
field sampling work for soil survey. Summarizing, there is room to test the insertion of PSS in
DSM.

The hypothesis of this study are: i) A Hyperspectral image can produce better predic­
tion of TC than a Multispectral one; ii) The spectral equalization and shadow treatment of a
Hyperspectral image produces better result than without this steps; iii) The combination of PSS
and DSM can enhance the spatial prediction of soil properties in comparison to the conventional
DSM; iv) The combination of PSS and DSM to predict of soil properties, using a Hyperspectral
image provides better result than Multispectral one; and v) Using the entire spectrum of wave­
lengths of PSS (350 to 2500 nm) gives a better result than the CHRIS bands wavelength range
(411 to 997 nm).

The aim of this study was to evaluate the combination of the PSS and DSM approaches
to improve the spatial prediction of Total Carbon of soils at the upper part of the INP. In practical
terms, to combine the CHRISHyperspectral and RapidEyeMultispectral images with laboratory
spectral reading from PSS to generate a new set of covariates, such as Subsurface Hyperspectral
image, and use it to refine the conventional DSM.

34



3.4 MATERIAL AND METHODS

3.4.1 Site Location, Description

Itatiaia National Park (INP) is located in the south of the state of Rio de Janeiro on the
boundaries with states of Minas Gerais and São Paulo, in the southeastern region of Brazil.
The highest peak, Agulhas Negras, has 2,791.55 msnm. The study was carried out in the so­
called upper plateau of the INP, which is defined above the 2000 msnm elevation. A detailed
description of the study area, soil and spatial sampling, analysis, and data handling are presented
in the Chapter I, item 2.5 Material and Methods.

The soil sampling points, selected with cHLS method, are shown in Figure 3.1 as yellow
dots, and the tracks as brow lines, greenish and brownish areas represents the lower and higher
elevation respectively. As mentioned in the Chapter I, due to environmental factors, the TC
increases with the elevation, as illustrated by the amount of TC (at each sampling point) as a
function of elevation (Figure 3.2).

Figure 3.1: Itatiaia National Park (blue). The INP plateau (green line) at central and northwest
areas, Mauá and lower part of INP areas at east and south respectively. Source of area
delimitation lines: IBGE (2010), INP managers including Tomzhinski et al. (2012).
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Figure 3.2: Distribution of Total Carbon in the soil according to the elevation in the upper part
of INP, Rio de Janeiro state.

3.4.2 Sampling Spatial Dependence

In any survey, the quantity of samples is always a big debate, and there is a thin line
between cost and effect. Too many sampling points, too expensive; too little, poor modeling
results. Since INP upper part has hard access it was applied the cLHS (as detailed in the previous
chapter) to define 84 profiles or sampling points, whichmade the survey costly in terms of energy
and resources. From this collection, four samples were eliminated due to uncertainty on data.
To keep confident on the spatial analyses spatial dependence analyses with a semivariogramwas
performed.

The semivariogram is a graph that express the increase of the sample’s variance to the
extent of the sampling locations (in distance). When the curve reaches the max variance it is
called sill, which is the variance a priori of phenomenon. The further distance to get the max
variance is the range. The sill and range are characterized by the “moment” when the curve turns
horizontal. With the semivariogram is possible to understand the spatial dependence (spatial
continuity) of the field samples (TZIACHRIS et al., 2017).

Theoretically, on very short distance, the sampling variance tend to be zero, but in practi­
cal applications it rarely happens. So, in the semivariogram there is a discontinuity in the origin,
called nugget effect. To explain the idea of nugget effect: in terms of TC, two soil samples
very close usually have slightly different values, giving a smaller variance in comparison with
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other samples. The variance increases with the distance, when the variance reaches the sill, and
the curve became horizontal, from that distance, which is called range, there is no spatial de­
pendence anymore. With the semivariogram is adjusted a continuous function which allows to
know the variance at any distance. Samples within the range have a certain statistical similarity.

The INP semivariogram (Figure 3.3) has nugget value of 0.72, sill 31.4, and range of
745 m. The samples were collected relatively close to each other, alongside the trail in a 100 m
buffer area, which agrees to the low value of the nugget, confirms that near samples spots have
lower variance. The sill is indeed close to the statistical variance which is 33.21, and the range
tells that until 745 m distance there is spatial dependence within the TC soil samples.

The semivariogram was calculated with variogram() function and the model adopted
was the spherical type, adjusted with fit.variogram() function to automatically find the best
fit, both from R package gstat.

Figure 3.3: Semivariogram of Total Carbon (TC) in soils from upper part of INP with the sphe­
rical model.

3.4.3 The Multispectral Images (RapidEye)

The RapidEye constellation is a group of 5 satellites launched in August 2008 into a
formation within the same orbital plane. They carry identical sensors calibrated to a common
standard, in this way images from one satellite will be equivalent to any other four. It collects
imagery in the blue (440­510 nm), green (520­590 nm), red (630­685 nm), the called Red edge
(690­730 nm) and NIR (Near Infrared) (760­850 nm). The tile grid defines 24 by 24 km tiles,
with a 1 km overlap, resulting in 25 by 25 km tiles (CAMPBELL; WYNNE, 2011). With the
constellation, the temporal resolution is one day.

The RapidEye images from 2011/07/02 and 2011/08/16 were used, they have a 12­bit
radiometric resolution, 6.5 m spatial resolution, and were orthorectified to 5 m spatial resolution
(RapidEye, 2012). The images were atmospherically corrected using the model 6s adapted (AN­
TUNES et al., 2012) an adaptation of the 6s model (VERMOTE et al., 1997), as described in
Costa et al. (2020). The RapidEye images were supplied through a license to Soils Department,
UFRRJ, by the Brazilian Ministry of the Environment.
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3.4.4 The Hyperspectral Images (CHRIS PROBA)

3.4.4.1 Acquisition, conventional treatment

The satellite PROBA was launch on 22 October 2001 (BEGIEBING; BACH, 2004),
carrying the Hyperspectral sensor CHRIS onboard. This sensor produces a scene with 5 images
across the zenith angles +55◦, +36◦, 0◦ (nadir), ­36◦, ­55◦ (forwards, nadir and backwards). The
platform has also the ability to shoot images of track ranging between 3.1 and 3.9 km wide
(CUTTER; KELLAR­BLAND, 2008). The wavelengths of each 62 CHRIS bands can be found
in the item 3.4.7 Subsurfacing Image Process, the CHRIS Operation further in the text.

During the dry season, in 2017/06/08, 2017/07/13, and 2018/08/11, 3 scenes were ac­
quired on demand from the European Spatial Agency (ESA), through a project submission for
a window­time on the dry season (not specific date). The first two had five view angles images
and the last four. The images with fewer clouds and best cover of the sampling points were cho­
sen from the second and third scenes, corresponding to the images: 2017/07/13 (code 3A60_41,
0◦) and (code 3A61_41, +36◦), together with 2018/08/11 (code 4CDF_41, 0◦). Accounting the
areas with vegetation as a nonlambertian target (as the natural targets (VERMOTE et al., 1997)),
we accept the trade­off to merge different angles scenes in favor to be able to cover all sampling
points with the Hyperspectral images, when the different angle view (+36◦) is the probable cause
of lower reflectance of the image (3A61) (Figure 3.4). Even covering all sampling points, the
scenes do not cover the entire INP plateau, thus, the mapping is restricted to this covering area
when this scenes are used. The list of acquired images can be found in Appendix B, Table S2
as supplementary material.

Several image treatments were conducted, such as noise reduction (striping and odd pi­
xels), atmospheric and geometric correction. The noise reduction was done with HDFClean V2
software (CUTTER, 2006), the atmospheric and geometric correction were performed within
Beam/ESA software workflow menu commands (Brockmann, 2014) with a CHRIS module de­
dicated software which used the imagemetadata to accomplish the process in an automated form.
The atmospheric correction algorithm is an adaptation of the MODerate resolution TRANsmit­
tance (MODTRAN4), which deals with simultaneous aerosol and water vapor retrieval. The
module also converts the images from Top­of­Atmosphere radiance to surface reflectance ima­
ges (GUANTER et al., 2008).

To perform the corrections, extra metadata was imported from external source provided
by ESA. It was not possible to finish the last step of the process in the image 4CDF (Figure 3.4),
the conversion from radiance to surface reflectance, due internal error of the software linked
with external metadata. Still we were able to use the image by dividing each band for 10000 and
making additional adjusts with R software, as described in the item 3.4.4.2 Scenes reflectance
intensity equalization.

After these steps, the selected images needed georreference adjusts, done with the Quan­
tum GIS software (QGIS Development Team, 2019), having a minimum of 4 ground control
points and using as reference the RapidEye images (Table 3.1). Three images sufficiently co­
vered the site over the sampled points. The three images still had different pixels sizes, which
were adjusted in R software (R Core Team, 2019) with aggregate, disaggregate and resample
from R raster package (HIJMANS, 2019), resulting in the mosaic image of Figure 3.4. From
this point onward, all the processing was conducted in R software, with packages described in
the Chapter I, item 2.5.9 Software.
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Figure 3.4: Mosaic of CHRIS PROBA images geometric and atmospheric corrected (3A60 cen­
ter, 3A61 left, 4CDF bottom) of the INP plateau, Rio de Janeiro State.

3.4.4.2 Scenes reflectance intensity equalization

The Hyperspectral image presented differences of reflectance (Figure 3.4), also present
in NIR, not only in RGB bands (Figure 3.6a). With tests of TC prediction accomplished, the dif­
ferences were still present in the final map of TC (Figure 3.16a, clear in comparison with Figure
3.17a). This poor result motivated the spectral harmonization of the scenes. The reflectance
of each scene had different intensity (Figure 3.4), thus the scenes were equalized to generate a
smooth and uniform image (Figure 3.5). Aside from the ground variations, the reflectance over
the mosaic area, between two scenes, has to be near constant. The images were adjusted for
each band with raster operations, taking as reference the central image (3A60), which covers
the major area and presents a better RGB plot (bands 23, 13 and 3, corresponding to 651, 551
and 452 nm) (Figure 3.4). As reference, the image (3A60, center) was not modified.

The raster operations started with extraction of pixels values from two draw lines, one
of each side of each scene and very close to the mosaic borders (of each of the three scenes).
This process was executed for all 62 bands in batch. For each band, the mean of these extrac­
ted (border) pixels from each scene were subtract to generate an index. Adding this index for
each band we equalized the reflectance intensity among the scenes, resulting in a homogeneous
mosaic (Figure 3.5).

To compare the treated images, four pixels (spatial points represented in Figure 3.4 as
blue triangles) were chosen very close to the sampling points, in a bright area. The pixels’ values
were extracted from the mosaicked image before and after the correction, as seen in Figures 3.4
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Figure 3.5: Mosaic of reflectance equalization CHRIS PROBA image of the INP plateau, Rio
de Janeiro State.

and 3.5. These extracted values across the 62 bands are represented in the Figures 3.6a and 3.6b.
After the treatment, the images became visually homogeneous in terms of reflectance

on the RGB plot (bands 23, 13, 3). The equalization results also reaches the NIR wavelengths,
comparing Figure 3.6a to 3.6b it is possible to observe that the pixel from the southern image
(4CDF) blue line had higher reflectance on the initial bands (1 to 20) with a horizontal trend.
This caused a brighter image. It is also possible to highlight that the bands close to 60 (NIR) had
a flat behavior, in comparison with curves of the other pixels. The Yellow line, representing the
pixel from the east image (3A61), had the initial bands in the opposite situation in comparison
with the previous pixel, revealing a darker image. After the treatment, all pixels had close values
at band 1 (Figure 3.6b), producing a homogeneous spectral pattern (Figure 3.5). The reflectance
was adjusted in a way to avoid negative values, causing a (small) shift in the ordinate axis in
Figure 3.6.

3.4.4.3 Shadow analysis and adjust

The mosaicked image had large areas with strong shadows. Since the TC tends to absorb
the reflectance, the shadow areas (low reflectance) tend to super estimate the amount of TC, as
verified in a previous test. To decrease this influence over the TC prediction, a shadow treatment
was performed. Using a shadow raster (which ranges from 0 to 1.7) derived from DEM raster,
where the selecting values close to 0 deliver all pixels of the image and values close to 1.7 deliver
zero pixel of shadow, the shadow values higher than 1 were selected by the expert user aiming
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(a) Before reflectance treatment

(b) After reflectance treatment
Figure 3.6: Pixel values before (a) and after (b) the reflectance intensity equalization.

to get only pixels over the shadow areas, and the non­shadow areas were set to null value,
becoming a raster mask on shadow pixels, in other words covering only the selected shadow
areas and the rest of the pixels had null value. Since the DEM was obtained with 25 m surface,
made by contour lines and hydrology (scale 1:50,000, IBGE data), all image data was worked
to the same pixel size.

The working principle is to adjust the shadow areas of the imagewith its own pixel values
and content, and these areas were treated with the shadow values themselves. The shadows have
different intensity across the spectral bands, manly caused due the natural vegetation spectral
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behavior, which is higher reflectance on the NIR and lower in the Vis bands (Figure 3.7a).

(a) Before shadow treatment

(b) After shadow treatment
Figure 3.7: Spectral behavior of two pixels (control points in forest category, bright and sha­

dow).

The INP upper part has different shadow intensity and behavior for each “island” of sha­
dow, the first attempts of shadow adjust with a single coefficient delivered divergent reflectance
over the shadows. For example, an area of shadow in forest presented reflectance of graminoid
areas. Therefore, the area was subset in three categories of shadow: forest, dark forest, and
graminoid areas. For each category, two control points were established, on dark and bright
pixels. The spatial location of the control points pixels were chosen empirically, according to
the expert knowledge. The Figure 3.7 shows the spectral behavior before and after the treatment
of the control points in the forest area (category).

From band 1 to 62 specific values were incremented according to the category. The
extracted shadow areas (pixels values) were compared to the bright (control point) then added
to their own value times a defined β coefficient (Equation 3.1). It means each shadow pixel had
its own value times an increment per band plus the original value (Equation 3.1). The intensity
of the shadow treatment (β coefficient) was determined according to the expert decision over
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the control points per category as: β forest = 1; β dark forest = 0.6; β graminoid = 0.4. The
process ran in batch, as loop format for each given j band.

abandj = tbandj + tbandj ∗ β ∗
cpb

ref
j − cps

ref
j

cps
ref
j

(3.1)

where:

abandj is the adjusted raster band j

tbandj is the raster band j to be adjusted

β is the coefficient to regulate the intensity of shadow adjust

cpb
ref
j is the reflectance bright control point from a given raster band j

cps
ref
j is the reflectance shadow control point from a given raster band j

The adjusted shadow (Figure 3.8) has recovered from very dark to close RGB values.
The black spots (super estimating TC) were changed into usable values for the predictions, in
consonance with Figure 3.7, where the signal was close to horizontal (shadow) and turned into
bright with similar spectral behavior (vegetation).

Figure 3.8: Shadow treated CHRIS image of INP plateau, Rio de Janeiro State.
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3.4.5 Proximal Soil Sensing (PSS)

The Proximal Soil Sensing was conducted using 300 soil samples taken at the 84 points
of INP in parallel with the study of Costa et al. (2020). In this Chapter we used only the top
layer (top soil horizon of 84 sampled points), details about PSS are presented in the Chapter I,
item 2.5.2 Soil Sampling, Analysis and Preparations. The PSS spectral range is from 350 to
2500 nm, which gives 2150 bands.

3.4.6 The Digital Soil Mapping (DSM) Process

Soil surveys require several steps, here we focus on the data processing. The process
to run a Digital Soil Mapping data is characterized by application of a mathematical model and
computational tools, in which, machine learning algorithms such as Random Forest learn about
the environment from the behavior of the covariates. The covariates are raster data which repre­
sent environmental characteristics such as relief (andmore topographic information), vegetation,
geology, etc.

To illustrate the process (Figure 3.9), we can say that the model is anchored on the sam­
pled points and the covariates are placed “below” it, in this way the model associates the values
of each covariate (on the raster pixel) to each sampled point (preserving the point location).
This configure the first step to train the model. Next step the model applies the “knowledge” to
other pixels spread over the space of raster covariates, and based on what it was learned before
it estimates a value to each pixel.

Soil Training Data

Digital Soil Map

Predictive 
Model

( f ) 

Covariates: Multispectral, Terrain; Geographic

Figure 3.9: The steps of DSM processing applied to soil of INP plateau, Rio de Janeiro State.
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3.4.7 Subsurfacing Image Process, the CHRIS Operation

We are calling subsurfacing an image the process to combine a Multi/Hyperspectral
image with PSS using machine learning techniques. The goal is to create a new covariate set to
use in DSM. In this step, the Random Forest algorithm was applied to the PSS spectrums (res­
ponse variables, read in laboratory from INP soil samples), to spatially predict those spectrums.
This step works similarly as in the DSM (Figure 3.9) but instead of predict a soil property, we
predict a chosen wavelength spectrum (Figure 3.10). The process was repeated to each desired
wavelength. As output, it was possible to have images for each wanted PSS wavelengths, giving
a Subsurface Hyperspectral image. The introduction of this image into a model to map a soil
property was called in this study the Hyperspectral Soil Mapping process.

As covariates (predictor variables), the final adjusted CHRIS PROBA Hyperspectral
image (with 62 bands) (Figure 3.8) and RapidEye bands were used in combination with Terrain
and other covariates in Table 3.1. To cover the spectral range of PSS (350 to 2500 nm), it was
chosen to predict 100 wavelengths bands, in the middle of each CHRIS band (62) plus 38 bands
(every 40 nm until 2500 nm) to cover the entire available PSS spectrum.

Spectral Training Data

Subsurface images (100 bands)

Soil Training Data

Hyperspectral Soil Map

Predictive 
Model

( f ) 

Covariates: Subsurface Images (100 bands); 
 Multispectral, Terrain; Geographic

Covariates: 
Multi/hyperspectral; 
Terrain; 
Geographic

Predictive 
Model

( f )

Figure 3.10: Subsurfacing process, the steps to the Hyperspectral Soil Mapping (HSM) proces­
ses applied to soils of the INP plateau, Rio de Janeiro State.

In order to match the predicted PSS wavelengths with the CHRIS bands there were used
the CHRIS wavelengths values (1 to 62): 411, 442, 452, 461, 471, 481, 490, 500, 510, 520,
530, 540, 551, 561, 572, 581, 590, 603, 613, 622, 631, 641, 651, 661, 672, 680, 686, 691, 697,
703, 709, 716, 722, 728, 735, 742, 748, 755, 762, 770, 777, 785, 792, 800, 808, 833, 841, 850,
859, 868, 877, 886, 895, 905, 915, 925, 940, 955, 965, 976, 987, 997 nm. And from 63 to 100
(every 40 nm), direct from PSS: 1000, 1040, 1080, 1120, 1160, 1200, 1240, 1280, 1320, 1360,
1400, 1440, 1480, 1520, 1560, 1600, 1640, 1680, 1720, 1760, 1800, 1840, 1880, 1920, 1960,
2000, 2040, 2080, 2120, 2160, 2200, 2240, 2280, 2320, 2360, 2400, 2440, 2480 nm. Details
about the spectral readings are available in the Chapter I, item 2.5.2 Soil Sampling, Analysis
and Preparations.
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Table 3.1: Covariates source and description.
Covariate col­
lection Covariate Source Description

Hyperspectral
CHRIS Images
(Non Treated)
(bands 1:62)

ESA 62 bands, initial spatial resolution of 30meters rearranged
for 25 m, spectral resolution ranging from 411 to 997 nm

CHRIS Shadow
treated (bands
1:62)

Shadow treatment of
CHRIS Images

Spatial resolution of 25 m, spectral resolution ranging
from 411 to 997 nm

Subsurface
CHRIS (bands
1:100)

Generated by the
combination of
CHRIS Shadow
treatment and PSS

Spatial resolution of 25 m, spectral resolution ranging
from 411 to 2480 nm

Subsurface Ra­
pidEye (bands
1:100)

Generated by the
combination of
RapidEye and PSS

Spatial resolution of 25 m, spectral resolution ranging
from 411 to 2480 nm

Multispectral
(RapidEye) RapidEye RapidEye (2011) 5 bands, initial spatial resolution of 5 meters rearranged

for 25 m, spectral resolution ranging from 440 to 850 nm
NDVI NDVI=(NIR–Red)/(NIR+Red)
SAVI SAVI=(1+0.5)(NIR–Red)/(NIR+Red+0.5)

Terrain DEM INP managers
Digital elevation model of the area­representation of the
terrain’s DEM INP managers 25 m surface made by con­
tour lines and hydrology (scale 1:50,000, IBGE data)

Slope Derived from DEM Gradient or rate of change of elevation between neighbo­
ring cells

Aspect Represents exposure faces, values in degrees (0 to 360◦)

Northernness Indicates the direction of the slope relative to the northern.
Northernness = abs(180◦−Aspect)

Plan_curv The shape of the hillside on the horizontal plane (concave,
rectilinear or convex)

Prof_curv The shape of the hillside on the vertical plane (concave,
rectilinear or convex)

Convergence The general shape of the hillside in all directions (con­
cave, rectilinear or convex)

Cat_area Related to volume of flooding that reaches a certain cell
TWI Describes a tendency for a cell to accumulate water

LS_factor Attribute equivalent to the topographic factor of the Re­
vised Universal Soil Loss Equation (RUSLE)

RSP Represents relative slope position based on the base chan­
nel network

CHND Altitude above the channel network (CHNB ­ original ele­
vation)

CHNB Interpolation of a channel network base level elevation

Geographic Geology (SANTOS et al.,
2000)

Categorical map with geological information (scale
1:50,000)

Geomorphology (SANTOS et al.,
2000)

Categorical map with geomorphological information
(scale 1:50,000)

Geology classes: alluvial sediments, colluvium sediments, nepheline syenite, quartz syenite, alkaline granite, magmatic breccia, homogeneous gneisses. NDVI: normalized difference ve­
getation index; SAVI: soil­adjusted vegetation index; DEM: digital elevation model; Plan_curv: plan curvature; Prof_curv: profile curvature; Convergence: convergence index; Cat_area:
catchment area; TWI: topographic wetness index; LS_factor: LS factor; RSP: relative slope position; CHND: channel network distance; CHNB: channel network base level. Data source:
(COSTA et al., 2020).
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Since the spectrums are coming from laboratory measurements of samples from the up­
per soil horizons, taken from the first layer of the soil (not just the surface of the soil, but from a
few centimeters bellow, in the middle of the horizon), they were identified as Subsurface Ima­
ges. They represent more than a bare soil image, but they are a spectral subsurface image with
actual spectral points anchored at sampled points. A color composition of bands 23, 13, 3 (651,
551 and 452 nm respectively) can be observed in Figure 3.12a. This RGB image of Subsurface
CHRIS is in agreement with the PSS andmultispectral color composite. In PSS, for example, the
organic soil has lower reflectance, and the mineral soils tend to have higher reflectance (both
match with the image, which tends to be dark in the areas of organic soils, and bright in the
mineral soils).

The same wavelengths bands were predicted for RapidEye producing a RapidEye Sub­
surface image (with dozens of bands, Figure 3.12b), to compareMultispectral and Hyperspectral
predictions. For both predictions terrain derivations and geographic covariates were added to
the models, they are listed in Table 3.1. Similar group of covariates was used by Costa et al.
(2020); partially used (DEM, RSP, Plan_curv, LS_factor, NDVI, slope, CHND, CHNB, geology
and satellite bands) by Chagas et al. (2017); (DEM, geomorphology, SAVI, NDVI, slope, and
satellite bands) by Pinheiro et al. (2019); and (DEM, Slope, Aspect, Northernness, Cat_area,
TWI, NDVI, SAVI, geology and satellite bands) by Samuel­Rosa et al. (2015).

The four pixels from Figure 3.4 were extracted from the Subsurface CHRIS and Sub­
surface RapidEye. The pixels’ pattern can be observed in Figure 3.13. In comparison with the
spectral pattern of Figure 3.6 it turns more linear until close to the band 62, which fits in the
features from soil spectrum. Also, in agreement with PSS spectral pattern (Figure 3.11, green)
(with the wavelength scale proportions accommodation). The use of PSS for mapping gives a
large source of information due the spectral range availability in comparison with orbital sensors
(Figure 3.11).

Figure 3.11: Multispectral (blue), Hyperspectral (orange) and proximal sensor (green).

3.4.8 Spatial Prediction of Total Carbon

With the acquired and generated covariates (Table 3.1), Random Forest machine learning
algorithm was applied to train models with the groups of covariates (Table 3.2). For each group,
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the spatial prediction was conducted, and to assess the results the Random Forest builtin out­of­
bag (OOB) cross validation was used.

Table 3.2: Groups of covariates to predict TC on soils of INP plateau.
Covariates groups
RapidEye + Terrain + Geographic (Without CHRIS)
Non Treated CHRIS + RapidEye + Terrain + Geographic
CHRIS Shadow treated + RapidEye + Terrain + Geographic
Subsurface CHRIS (bands 1:62) + RapidEye + Terrain + Geographic
Subsurface CHRIS (bands 1:100) + RapidEye + Terrain + Geographic
Subsurface RapidEye (bands 1:100) + RapidEye + Terrain + Geographic

In summary, the process applies the 100% pure soil signal (reflectance from PSS) in soil
sampled pixels from the INP, then it is used to spatial predict with the pure soil reflectance over
the entire study area. With the generated pure soil reflectance image (Subsurface image), it is
possible to predict the desired soil property, in this case TC. To illustrate the complete process,
a workflow is presented in the Figure 3.14, plus a detailed of scheme Subsurfacing process in
Figure 3.10.

The spectral pre­processing IRF4 was applied to the Subsurface CHRIS image aiming
to increase the prediction potential. Although the background tests showed little increment in
comparison with the original Subsurface CHRIS image, we decided to leave the pre­treatments
for the previous Chapter.
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(a) Subsurface image created using CHRIS
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525000 530000 535000 540000 545000

(b) Subsurface image created using RapidEye
Figure 3.12: The upper part of INP plateau Subsurface image created using CHRIS and Rapi­

dEye (bands 23, 13, 3, corresponding to 651, 551 and 452 nm, positioned as RGB).
Notice, the main difference among them is that RapidEye covers the entire area of INP plateau.
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(a) Subsurface CHRIS Spectral Profile

(b) Subsurface RapidEye Spectral Profile
Figure 3.13: Comparison of spectral behavior Subsurface CHRIS and RapidEye.
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CHRIS Proba images

Atmospheric and geometric correction,

(HDFClean, Beam and Quantum GIS)

Reflectance intensity equalization

(Henceforward  R software)

Shadow analysis and adjust

Hyperspectral adjusted

CHRIS Proba images

Proximal Soil Sensing

(soil top layer)

Subsurfacing images

(Random Forest)

Multispectral

RapidEye images

Non treated CHRIS

Shadow treated CHRIS

Subsurface CHRIS (bands 1:100)

Subsurface RapidEye (bands 1:100)

HSM

(Hyperspectral Soil Mapping)

Total carbon

(Random Forest)

Total Carbon soil data

(wet chemistry lab)

Without

CHRIS

Non treated

CHRIS

Shadow treated

CHRIS

Subsurface

CHRIS

(bands 1:62)

Subsurface

CHRIS

(bands 1:100)

Subsurface

RapidEye

(bands 1:100)

Figure 3.14: Workflow through CHRIS treatment, adjusts, modeling the Subsurface images,
and spatial prediction TC with HSM in INP, Rio de Janeiro state.
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3.5 RESULTS

With the application of RapidEye, Terrain, and Geographic covariates (without CHRIS)
the spatial prediction of TC produced the following descriptive statistics indexes: coefficient of
determination (R2) 0.32, Mean Squared Error (MSE) 22.39%, Root Mean Square Error (RMSE)
4.73% and bias 0.19 (Figures 3.15a and 3.15b). The 5 higher ranked covariates by the model
were DEM, Northness, CHNB, RapidEye bands 5 (Near IR) and RSP (Figure 3.15c).

Using the Non Treated CHRIS image, the predicted TC plot (Figure 3.16a) presented
different amounts of TC for each image (3A60, 3A61, 4CDF), resulting in a segmented map,
with a strong relationship with the Non Treated CHRIS (Figure 3.4). The descriptive statistics
shows values of R2 0.33, MSE 21.9%, RMSE 4.68% and bias 0.2 (Figures 3.16a and 3.16b). The
top of ranked covariates are dominated by the groups Terrain (DEM 1st), Spectral (RapidEye)
and Geographic. The Hyperspectral covariates start to appear in the 8th position (Figure 3.16c).

The CHRIS image with the shadow treatment resulted in a homogeneous plot map and
higher statistical coefficient in comparisonwithNonTreatedCHRIS;with R2 0.36,MSE 20.96%,
RMSE 4.58% and bias 0.24 (Figures 3.17a and 3.17b). The predominant group of covariates in
the ranked list is similar to Non Treated CHRIS, starting with DEM as well. The Hyperspectral
covariate starting in the 6th position (Figure 3.17c).

The Subsurface CHRIS (using layers 1 to 62) is a changing perspective, with the des­
criptive statistics outstanding as R2 0.58, MSE 13.8%, RMSE 3.71% and bias 0.12 (Figures
3.18a and 3.18b). The covariates in the ranked list are mostly from Hyperspectral group (sub­
surface CHRIS), starting with band 53. The Relief appears in 6th, 19th and 22nd position with
Northness, Prof_curv and DEM respectively (Figure 3.18c).

In sequence, Subsurface CHRIS using the plus 38 predicted wavelength (using layers 1
to 100), had the descriptive statistics value of R2 0.57, MSE 14.13%, RMSE 3.76% and bias
0.09 (Figures 3.19a and 3.19b). Among the first 40 covariates only three covariates are from
other groups else then Hyperspectral. Northness is in 2nd position, RapidEye band 4 in 32nd
and plan_curv in 39th. The subsurface spectral bands (with the wavelengths, from 1000 to 2480
nm, above the nominal values of the original CHRIS PROBA, bands 63 to 100) were ranked in
the 7th to the 9th position, bands 75 and 71 respectively (Figure 3.19c).

The Subsurface RapidEye (using layers 1 to 100), had the descriptive statistics value
of R2 0.56, MSE 14.56%, RMSE 3.82% and bias 0.04 (Figures 3.20a and 3.20b). The first
ranked covariate is the subsurface spectral band 75, with Northness as 3rd one. Among the first
40 covariates, again, only three covariates are from other groups than Hyperspectral (Figure
3.20c). From figures 3.15b to 3.20b, the transversal line is the fitted model line.

The summary of the spatial prediction of TC at the Itatiaia National Park upper plateau
is presented in Table 3.3. The R code and data can be found on the repositories of the Author.
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Predicted C
Covariates: RapidEye + Terrain + Geographic

Itatiaia National Park

(a) Map TC RapidEye

(b) TC RapidEye, observed versus predicted (c) Model covariates ranking
Figure 3.15: Spatial prediction of TC over INP plateau, with the covariates RapidEye, Terrain,

Geographic.
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(b) TC Non Treated CHRIS, observed
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(c) Model covariates ranking

Figure 3.16: Spatial prediction of TC of soils in the INP plateau, with the covariates NonTreated
CHRIS, RapidEye, Terrain, Geographic.
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Figure 3.17: Spatial prediction of TC of soils in the INP plateau, with the covariates Shadow
treated CHRIS, RapidEye, Terrain, Geographic.
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Figure 3.18: Spatial prediction of TC of soils in the INP plateau, with the covariates Subsurface
CHRIS (bands 1 to 62), RapidEye, Terrain, Geographic.
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Figure 3.19: Spatial prediction of TC of soils in the INP plateau, with the covariates Subsurface
CHRIS (bands 1 to 100), RapidEye, Terrain, Geographic.
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Figure 3.20: Spatial prediction of TC of soils in the INP plateau, with the covariates Subsurface
RapidEye (bands 1 to 100), RapidEye (multispectral bands 1 to 5), Terrain, Geographic.
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Table 3.3: Descriptive statistics of spatial prediction of TC of soils in the INP plateau, covariates
used, and the main explanatory covariate.

Covariates groups R2 MSE RMSE bias Main cov.
RapidEye + Terrain + Geographic (Without CHRIS) 0.32 22.39 4.73 0.19 DEM
Non Treated CHRIS + RapidEye + Terrain + Geographic 0.33 21.9 4.68 0.2 DEM
CHRIS Shadow treated + RapidEye + Terrain + Geographic 0.36 20.96 4.58 0.24 DEM
Subsurface CHRIS (bands 1:62) + RapidEye + Terrain + Geographic 0.58 13.8 3.71 0.12 band 53
Subsurface CHRIS (bands 1:100) + RapidEye + Terrain + Geographic 0.57 14.13 3.76 0.09 band 53
Subsurface RapidEye (bands 1:100)+ RapidEye+ Terrain+ Geographic 0.56 14.56 3.82 0.04 band 75

R2: coefficient of determination; MSE: Mean Squared Error in (%) as TC; RMSE: Root Mean Square Error in (%)
as TC; Main cov.: Higher ranked covariate from correspondent Random Forest model. Band 53 = 895 nm and
band 75 = 1480 nm.
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3.6 DISCUSSION

Considering that the semivariogram presented a spatial dependence of 750 m for TC
sampling of soil in the INP plateau, it is acceptable that 84 soil profiles were sufficient to perform
the spatial modeling. A study of soil carbon in an area located in the South region of Brazil by
Samuel­Rosa et al. (2015) used a much more populated mesh points of 350 samples in ∼2000
hectares, when compared to INP plateau (84 points for 16402 hectares), and the semivariograms
have similar aspects which confirm that the 84 points are sufficient for this study area.

Comparing the prediction without CHRIS (covariates: RapidEye, Terrain, Geographic)
and the Non Treated CHRIS, the second had slightly better coefficients (probable due to usage
of CHRIS bands in the model), although, as expected, the map plot still reflected the mosaic
differences originated from the source image (Non Treated CHRIS). The mosaic has darker area
over the image 3A61 (lower reflectance) and lighter on 4CDF (higher reflectance) in comparison
with the 3A60. This reflectance differences were captured by the Random Forest model, as
presented in the TC map in Figure 3.15a.

The shadow treatment is a process that uses the raw data from each pixel, as a result
it tends to reduce the super estimation of TC in the shadow areas. This Hyperspectral image
presented improvements in comparison with predictions without CHRIS and Non Treated CH­
RIS. The R2 reached 0.36 in comparison with 0.32 and 0.33 from previous prediction. A visual
inspection of the map plots indicated lesser super estimation over TC amounts for the shadow
treatment. For the three first prediction the DEM covariate is at the top of the ranking, and the
Terrain group is usually higher in the rank. Analogous to Chagas et al. (2017), where elevation
(DEM) was highly ranked with Random Forest, to predict soil classes, and to map phytophysi­
ognomies in Pinheiro et al. (2019). Mapping TC in a Chinese province, with boosted regression
trees algorithm, Wang et al. (2017) had the DEM as most important covariate. This covariate
builds a strong relation with TC, in accordance with this study, unless when used the Subsurface
Image as covariate.

It is noticeable that the prediction with Multispectral image SAVI and NDVI ranked
together (Figure 3.15c). However, with Non Treated CHRIS and shadow treatment, NDVI was
higher ranked, eight and four position, respectively (Figures 3.16c and 3.17c). Regarding to
the Subsurface images (in HSM) both were placed after the fortieth position (out of the plotted
figure range, Figures 3.18c, 3.19c and 3.20c).

The sampled points were mainly in the bright areas (see Figure 3.5), leading to minimize
the effects of the shadow treatment, when translated into validation coefficients. The treatment
can be improved by picking more values from different shadow points across the entire image
and treating each shadow (or part of it) individually.

The Subsurface CHRIS (1 to 62 and 1 to 100) resulted in a map with lighter color tones,
also in the shadow areas lesser dark colors are observed, which indicates better estimation of
TC in comparison with the previous plots. The TC prediction which used Subsurface covariates
had much larger presence of Hyperspectral covariates (subsurface covariates) and higher ranked
among the most useful in the models than the others predictions. The difference between the
application of wavelengths, from 411 to 1000 nm (62 bands) or 411 to 2500 nm (100 bands),
was not significant in this study. However, it is worth to test across the V­SWIR wavelength
range, since it might behave better with a larger sample size.

TC prediction with Subsurface RapidEye (with 100 bands) was above the expectations,
getting close to the Subsurfacing CHRIS. In this case, the most important covariate was the
band 75 (1480 nm), and in the rank of the important covariates, 22 from 40 are from wavelength
higher than 997 nm (last band of CHRIS in NIR, edge of wavelengths), and 30 of 40 above the
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NIR limit of RapidEye 850 nm. The ranked covariates (Figure 3.20c) from band 75 (on top)
with the correspondent wavelengths are: 1480, 987, northernness, 905, 1120, 1720, 1240, 2120,
925, 1400, 1160, 1200, 551, 1840, 1920, 1680, 976, 572, 520, 530, 1080, 997, 1440, 1000,
1560, 1360, 1760, 1880, 1600, 762, 2040, RapidEye Band 4 (760­850), 777, 965, DEM, 1280,
2080, 808, 1520 and 955 nm. It shows the extraordinary gain of the prediction using the entire
available range of wavelengths. The model ranking of the covariates showed the advantage of
exploring the covariates in further wavelengths, such as those provided by the PSS used in this
study, and it is reported that theMID infraredwavelengths, in PSS have better potential to predict
soil properties than V­SWIR (ROSSEL et al., 2005; DANGAL et al., 2019). Thus, we presume
that application of MID infrared might improve even more the capacity of soil properties spatial
prediction with the HSM method.

The study area in the INP plateau was the object of soil digital mapping (COSTA et al.,
2020), and the authors used few covariates from the covariate selection approach to enhance the
prediction process of TC, obtaining a R2 of 0.45. In this baseline with Multispectral covariates
this study obtained the R2 as 0.32, showing that it could be improved. Then, by using the
Subsurface image, it was possible to reach the R2 of 0.58, which confirms the potential of the
HSM method. Thus, the covariate selection method still might improve the use of Subsurface
image.

A mapping of an Australian region (GOMEZ et al., 2008) shows that the spectral reso­
lution is important, but it is not the major factor to obtain an accurate prediction. This was also
verified in this study, when the application of 62 and 100 bands of the Subsurface image resulted
in values of R2 as 0.58 and 0.57, respectively. Similar perspective was observed in the results
of previous Chapter, when it was used 299 instead of 2150 spectral covariates.

A study mapping Soil Organic Carbon (SOC) in Illinois (JABER et al., 2011) found
that in comparison with Multispectral, the Hyperion Hyperspectral image marginally enhanced
the prediction of SOC. In a comparison of Multispecrtal and Hyperspectral images, Castaldi et
al. (2016) found that Hyperspectral also improved TC and texture predictions in soils. In this
study, a similar situation occurred with the use of Hyperspectral sensor CHRIS, and RapidEye
increased the model prediction capacity from R2 of 0.32 (RapidEye) to 0.36 (CHRIS after the
reflectance equalization Figure 3.5 and shadow treatment Figure 3.8). Hyperspectral images
showed better capacity to identify saline soils than the Multispecrtal images (MOREIRA et al.,
2015; NETO et al., 2017). In this study, just to emphasize, the Subsurface images had much
better results than the “simpler” Hyperspectral images.

In agreement with Jaber et al. (2011), the higher spatial resolution could lead to an im­
provement of the technique, since it should reduce the effect of mixed pixel. The effort to apply
more detailed covariates should be balanced with more field sampling and analyzed for each
case. According to Samuel­Rosa et al. (2015) for some soil properties the difference is margi­
nal, while for TC, it may be worth. In agreement with Guevara et al. (2018), the expert opinion
is needed to balance and check the models, avoiding unrealistically high modeling estimates
of soil properties such as TC. The model tends to super estimate TC depending on the chosen
covariates.

As pointed by some authors, the selection of covariates with their advantages can further
improve the model’s prediction capacity (JABER et al., 2011; NUSSBAUM et al., 2018; GO­
MES et al., 2019; COSTA et al., 2020; WADOUX et al., 2020). In this study, we focused into
developing the Hyperspectral Soil Mappingmethod and to compare with the conventional DSM.

Studies with airborne sensors, such as Ben­Dor et al. (2002), Selige et al. (2006), Ste­
vens et al. (2006), Guo et al. (2019), showed good spatial prediction of soil carbon, with R2

values as 0.83, 0.90, 0.85 and 0.54, respectively, to the cited authors. The average altitude of
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airplane missions is of three kilometers, while satellites are in the range of hundreds of kilome­
ters, varying from 552 to 685 km for PROBA satellite. So, airborne sensors tend to have less
distortion, noise and interference, such as the atmospheric ones which are a driver for better
results. Sample size and other site characteristics play a role in DSM; in this sense coefficients
comparison may not reflect the model potential. In this study, we focus in the development of
the HSM method with its leap improvement.

The synthetic temporal image series from Landsat 5 of Demattê et al. (2018), Gallo et al.
(2018), Mendes et al. (2019), Padilha et al. (2020), the spectral­temporal response surface Zhang
et al. (2017), Lamichhane et al. (2019), and similarly the bare ground images mentioned by
Wadoux et al. (2020), all work on the level of bare soil reflectance. They are a great achievement,
but we understand that the HSM (on Subsurface Image) is more efficient due to the pure PSS
signal, and the possibility to expand of orbital/aerial bands to the limits of PSS wavelengths. As
covariate to Subsurface the synthetic images might increase performance of the HSM.

Among the many characteristics that can affect the spatial prediction of soil properties
we highlight the number of samples to validate the models, which is even harder to take in
mountain regions with limited access and locomotion such as the Itatiaia National Park. Besides,
in the INP the relief may influence the optical images, causing shadows and different degrees
of reflectance, and it affects vegetation coverage and associated indexes, resulting in different
degrees of homogeneity of the surface.

The process to combine PSS and DSM (Subsurfacing) can generate dozens, hundreds or
thousands of spectral bands (as the user choose from the pool of available PSS wavelengths) to
be used as new covariates with HSM, aiming toward the most accurate soil map.
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3.7 CONCLUSIONS

The combination of Multi–Hyperspectral images and spectral data and PSS proved to be
an improved mapping method, named here as HSM, since it improved the results of TC predic­
tion in 75%, rising the R2 from 0.33 to 0.58 in the case of Non Treated CHRIS to Subsurface
CHRIS. For the Subsurface RapidEye it also increased in 75% the R2 from 0.32 to 0.56. The
Subsurfacing process made the images easier to be worked by the model associate with TC, we
presume that it is a result of the reduction or elimination of atmospheric, land cover, vegeta­
tion interferences, and pure PSS signal in the system. The atmospheric corrections can reduce
noise effects on the image and PSS had no effect of atmosphere. Thus the PSS samples are
from few centimeters below ground, instead of a top soil surface, thus, the Subsurfacing process
deliver literally a subsurface image with zero or almost zero atmospheric disturbance (almost
zero comes from the use of orbital images, which even treated may carry residual atmospheric
disturbance). Even in bare soils the Subsurfacing process is superior to any satellite or synthetic
image, because it allows to expand the bands (beyond) of any optical orbital sensor (satellite) to
any desire PSS band.

The HSM method presented in this study is the first direct integration between PSS and
DSM, and such major improvement is rarely found in DSM techniques. Thus, following the line
of chapter I, the same may occur with other soil properties and should be tested in the future.

The methods of producing Subsurface images significatively improved the spatial pre­
diction of soil properties. The technique can be applied for monitoring soil carbon in soil of
mountainous regions of the Atlantic Forest Biome with very restricted access, such as the INP,
where it can contribute to the park managers. It can also be used for agricultural purposes, and
using of MID infrared might enhance the prediction results. The Subsurfacing process allows
to validate each band of the spectral image, which permits the computation of uncertainties.

The Multispectral images provided great results for the HSM (close to Hyperspectral).
So, whenever available, the use of data from the Hyperspectral sensor is recommended and
newer sensors mighty provide even better results. In other words, for DSM or HSM, the Hy­
perspectral images can improve (slightly) the spatial predictions, but the strong gain comes with
HSM in face of DSM. Although, it is recommended to test in other areas to confirm the strength
of the technique, in this study the Subsurface Image outperformed the conventional covariates,
consequently, the HSM outperformed the conventional DSM.
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4 GENERAL CONCLUSIONS

The use of spectra of soil samples from the upper part of the Itatiaia National Park
(INP) obtained through Proximal Remote Sensing (PSS) in comparison with laboratory che­
mical analyzes, allowed to reaffirm the potential of Remote Sensing techniques (RS) to predict
soil properties.

In parallel to the PSS recording of soil from the upper part of the INP and the prediction
of soil properties with Machine Learning (ML) algorithms, a new spectral preprocessing was
developed, the Inverse of Reflectance to Factor of 104 (IRF4). When it was applied it increased
the predictive capacity of certain ML models for soil properties such as Total Carbon (TC) and
Hydrogen, when compared to commonly used preprocessing. The combination of IRF4 with
established techniques has also raised the potential for predicting soil properties in many cases.
This treatment is simple to apply and does not require adjustments for use.

The fusion between PSS andMulti–Hyperspectral images for Digital Mapping of the TC
content in the soils of the INP produced a result considered excellent, with an increase in the
predictive capacity by 75%. This combination, which is a novelty of this work, minimized the
limitations of both the PSS and Digital Soil Mapping (DSM) techniques, and it was nominated
Hyperspectral Soil Mapping (HSM). This junction allowed to amplify the radiometric resolution
of hyperspectral images to the desired PSS radiometric resolution. In addition to mapping the
TC content in the soil, it is assumed that this technique can be applied to other soil properties,
so it is recommended to be tested in other environments.

The work with INP Soil–RS dataset together with open software like R, allowed to ad­
vance in the state of the art of RS techniques, for soil property prediction and also Digital Map­
ping of Soil Properties. As previously mentioned, the merge between PSS and DSM, coined by
the author as HSM, is highly recommended for areas with difficult access–locomotion, due to the
greater predictive capacity achieved. With fewer field collection points, it is possible to survey
soil properties, which meets the previous demand required for Digital Soil Mapping. Therefore
HSM reduces significantly survey costs of soil survey, with greater efficiency and agility with
the same (or greater) reliability as the usual DSM, with application potential to environmental
monitoring.

Following the development of RS techniques, with the spectral record accessible (with
the PSS spectra in hands), both predictions with PSS and HSM can be further updated. The
spectral data contains much information that is still little explored or not al all. Therefore, in the
future, the INP spectral data may be reevaluated and reprocessed, thus serving as a reference
(together with the park) for comparison and scientific improvement of the methods.
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5 RECOMMENDATIONS AND FUTURE WORK

Aside from atmospheric and geometric corrections (with ESA provided software), all
processing was conducted in FOSS (free open source software) environment. Programming
languages and software such as R have a unique learning curve, but allow flexibility in dealing
with information, files and varieties of ML algorithms. This allows fine adjustments, according
to the user’s determinations and objectives, which can lead to an increase in the quality and
precision of the results, when compared to other computer programs, in general more complex
and with less possibility of changes by the user. In this context, authors encourage the use and
development in such platforms.

The following recommendations are made to future research in order to improve the ca­
pacity of the models to predict soil properties: i) Explore deeper the wavelengths (1000 ­ 2500
nm) to build the Subsurface image; ii) Continue to explore with MID infrared; iii) Application
of covariates selection methods at both levels: prediction of the soil reflectance image (subsur­
face image) and, spatial prediction of the chosen soil property (HSM); iv) Test different (newer)
hyperspectral sensors; v) Compute the cLHS with shadow treated images and compare the map­
ping results on the same points with a non shadow treated; vi) Use different machine learning
algorithms for HSM, such as Artificial Neural Networks, Cubist, Keras, among others, with de­
eper tuning on each of these models; vii) Use a synthetic image as covariate for the subsurfacing
process may increase capacity of HSM; viii) Compute the uncertainties on subsurfacing process
and HSM; ix) Test the prediction in different areas and or environmental features such as phy­
tophysiognomies and soil types or properties, we hypothesize that the DEM covariate would not
be in top position when applying the HSM (which require subsurfacing process), as it happened
in this study; x) Since the RapidEye was used as covariate for the subsurfacing with CHRIS,
to run a completely independent test to compare Multi and Hyperspectral images in HSM; and
xi) Apply these spectral techniques in different biomes and landscape conditions, or even in
mountainous versus flat areas, in the same region, to assess whether the ability to predict the
properties will vary with the relief.
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7 APPENDIX

APPENDIX A — Complete results of Chapter I

Complementary Table for Tables 2.4 and 2.5 of Chapter I.

Table S1: The 600 cross­validated groups of predicted soil properties across the models and
pre­treatments.

Pre­treatments Model Soil property R2 MSE RMSE bias RPD
AB­log ann Al ­0.484 2.631 1.592 0.063 0.944
AB­log cb Al 0.431 1.135 1.049 ­0.079 1.405
AB­log plsr Al 0.382 1.159 1.072 0.031 1.364
AB­log rf Al 0.23 1.546 1.227 0.06 1.196
AB­log ann TC 0.025 27.364 5.058 0.428 1.154
AB­log cb TC 0.829 4.717 2.121 ­0.14 2.652
AB­log plsr TC 0.819 5.003 2.19 ­0.03 2.554
AB­log rf TC 0.769 6.714 2.527 0.036 2.213
AB­log ann H 0.091 0.473 0.679 ­0.027 1.105
AB­log cb H 0.625 0.198 0.44 0.001 1.697
AB­log plsr H 0.565 0.228 0.471 0.007 1.598
AB­log rf H 0.53 0.24 0.486 0.003 1.543
AB­log ann N 0.491 0.049 0.208 ­0.003 1.761
AB­log cb N 0.756 0.028 0.159 ­0.005 2.203
AB­log plsr N 0.798 0.021 0.143 ­0.003 2.37
AB­log rf N 0.691 0.032 0.177 0.002 1.935
AB­log ann Ca ­0.242 0.111 0.272 0.006 0.949
AB­log cb Ca ­0.224 0.088 0.259 ­0.043 0.953
AB­log plsr Ca ­0.878 0.096 0.29 ­0.002 0.787
AB­log rf Ca ­0.383 0.076 0.253 0.013 0.919
AB­log ann K 0.057 0.021 0.133 0 1.085
AB­log cb K ­0.837 0.025 0.136 ­0.002 1.25
AB­log plsr K ­0.107 0.021 0.135 0.003 1.059
AB­log rf K ­0.109 0.022 0.141 0.011 0.998
AB­log ann Mg ­0.849 0.166 0.396 0.015 0.794
AB­log cb Mg ­0.135 0.101 0.314 ­0.05 0.968
AB­log plsr Mg ­0.112 0.095 0.305 ­0.002 1.002
AB­log rf Mg ­0.036 0.093 0.301 0.016 1.013
AB­log ann Na ­0.372 0.003 0.038 0 0.933
AB­log cb Na ­11.385 0.006 0.061 0 0.773
AB­log plsr Na ­3.472 0.004 0.054 0 0.594
AB­log rf Na ­1.31 0.003 0.044 0.003 0.874
AB­log ann P ­3.714 191.526 10.922 0.551 0.899
AB­log cb P ­0.354 85.214 8.583 ­1.387 0.939
AB­log plsr P ­0.428 83.634 8.805 ­0.076 0.869
AB­log rf P ­0.057 69.414 7.782 0.043 1.004
AB­log ann pH ­0.198 0.183 0.422 ­0.011 0.957
AB­log cb pH 0.123 0.134 0.362 ­0.014 1.115
AB­log plsr pH 0.123 0.133 0.362 ­0.009 1.108
AB­log rf pH 0.095 0.138 0.369 0.005 1.081
CR ann Al ­0.063 2.126 1.438 ­0.015 1.021
CR cb Al 0.381 1.198 1.078 ­0.016 1.377
CR plsr Al 0.299 1.355 1.146 0.015 1.296
CR rf Al 0.388 1.225 1.097 0.062 1.322
CR ann TC 0.468 14.341 3.639 ­0.07 1.576
CR cb TC 0.724 7.494 2.642 0.086 2.188
CR plsr TC 0.732 7.021 2.586 ­0.05 2.214
CR rf TC 0.81 5.581 2.295 0.026 2.442
CR ann H ­0.116 0.551 0.736 ­0.03 1.02
CR cb H 0.522 0.25 0.497 ­0.021 1.492
CR plsr H 0.455 0.281 0.525 ­0.002 1.422
CR rf H 0.497 0.265 0.51 0.001 1.46
CR ann N 0.642 0.039 0.192 0.009 1.799
CR cb N 0.625 0.038 0.19 0.006 1.849
CR plsr N 0.686 0.032 0.174 ­0.003 2
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Table S1 – continued from previous page
Pre­treatments Model Soil property R2 MSE RMSE bias RPD
CR rf N 0.755 0.026 0.157 0.004 2.166
CR ann Ca ­0.02 0.067 0.233 ­0.002 1.012
CR cb Ca ­2.34 0.121 0.329 ­0.024 0.744
CR plsr Ca ­1.748 0.113 0.324 0.001 0.7
CR rf Ca ­0.558 0.078 0.262 0.024 0.876
CR ann K ­0.136 0.023 0.144 0.002 0.962
CR cb K ­0.144 0.02 0.135 ­0.009 1.047
CR plsr K ­0.066 0.02 0.135 0.002 1.024
CR rf K 0.249 0.016 0.116 0.009 1.28
CR ann Mg 0.047 0.086 0.29 ­0.005 1.044
CR cb Mg ­0.364 0.123 0.341 ­0.025 0.908
CR plsr Mg ­0.235 0.107 0.323 0.004 0.953
CR rf Mg 0.107 0.081 0.28 0.019 1.084
CR ann Na ­0.643 0.003 0.04 0 0.885
CR cb Na ­0.258 0.003 0.037 ­0.005 0.99
CR plsr Na ­3.951 0.004 0.055 0 0.587
CR rf Na ­1.086 0.003 0.04 0.005 0.912
CR ann P ­0.165 79.209 8.24 0.177 0.959
CR cb P ­0.278 85.186 8.574 ­1.374 0.92
CR plsr P ­0.702 96.102 9.427 0.189 0.824
CR rf P ­0.073 73.08 7.863 0.607 1.016
CR ann pH ­0.116 0.168 0.408 ­0.002 0.977
CR cb pH 0.078 0.14 0.372 ­0.018 1.073
CR plsr pH ­0.006 0.151 0.383 0 1.061
CR rf pH 0.18 0.124 0.351 0 1.133
IRF4 ann Al ­0.286 2.393 1.518 0.159 0.99
IRF4 cb Al 0.419 1.078 1.027 ­0.078 1.449
IRF4 plsr Al 0.176 1.67 1.268 0.043 1.168
IRF4 rf Al 0.231 1.545 1.227 0.063 1.195
IRF4 ann TC 0.524 14.238 3.624 ­0.028 1.57
IRF4 cb TC 0.852 3.998 1.958 ­0.044 2.867
IRF4 plsr TC ­0.701 60.745 5.01 0.006 1.84
IRF4 rf TC 0.771 6.601 2.51 0.023 2.22
IRF4 ann H 0.097 0.458 0.67 ­0.043 1.132
IRF4 cb H 0.672 0.173 0.411 ­0.034 1.817
IRF4 plsr H ­0.1 0.571 0.641 0.041 1.416
IRF4 rf H 0.532 0.239 0.485 0.006 1.547
IRF4 ann N 0.546 0.048 0.207 ­0.003 1.75
IRF4 cb N 0.731 0.03 0.161 ­0.005 2.232
IRF4 plsr N 0.375 0.066 0.23 0.006 1.731
IRF4 rf N 0.685 0.033 0.179 0.003 1.908
IRF4 ann Ca ­1.231 0.114 0.307 0.018 0.804
IRF4 cb Ca ­0.307 0.091 0.266 ­0.032 0.915
IRF4 plsr Ca ­2.552 0.285 0.391 0.012 0.759
IRF4 rf Ca ­0.374 0.076 0.253 0.013 0.923
IRF4 ann K ­0.848 0.029 0.159 0.001 0.927
IRF4 cb K ­0.551 0.023 0.13 ­0.012 1.316
IRF4 plsr K ­1.114 0.076 0.189 0.006 0.986
IRF4 rf K ­0.117 0.022 0.141 0.011 0.993
IRF4 ann Mg ­0.712 0.149 0.378 0.022 0.823
IRF4 cb Mg ­0.056 0.095 0.304 ­0.054 1.001
IRF4 plsr Mg ­15.95 2.22 0.741 0.033 0.874
IRF4 rf Mg ­0.037 0.093 0.301 0.017 1.013
IRF4 ann Na ­1.626 0.003 0.041 ­0.001 0.931
IRF4 cb Na ­22.349 0.007 0.067 0 0.747
IRF4 plsr Na ­102.221 0.039 0.118 0.006 0.474
IRF4 rf Na ­1.345 0.003 0.044 0.003 0.864
IRF4 ann P ­2.279 189.791 11.801 1.356 0.817
IRF4 cb P ­0.335 80.372 8.382 ­1.304 0.961
IRF4 plsr P ­8.816 648.131 16.14 0.651 0.722
IRF4 rf P ­0.062 70.088 7.812 0.052 1
IRF4 ann pH ­0.328 0.204 0.44 ­0.007 0.933
IRF4 cb pH 0.22 0.117 0.34 ­0.02 1.18
IRF4 plsr pH ­2.228 0.457 0.558 ­0.022 0.889
IRF4 rf pH 0.096 0.138 0.369 0.006 1.081
IRF4 + NR 434 ann Al ­0.01 1.816 1.329 0.04 1.131
IRF4 + NR 434 cb Al 0.517 0.935 0.961 0.003 1.514
IRF4 + NR 434 plsr Al 0.405 1.096 1.039 ­0.012 1.431
IRF4 + NR 434 rf Al 0.218 1.56 1.233 0.049 1.191
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Table S1 – continued from previous page
Pre­treatments Model Soil property R2 MSE RMSE bias RPD
IRF4 + NR 434 ann TC 0.472 12.351 3.401 0.366 1.728
IRF4 + NR 434 cb TC 0.813 5.562 2.291 ­0.204 2.451
IRF4 + NR 434 plsr TC 0.824 4.965 2.181 ­0.055 2.559
IRF4 + NR 434 rf TC 0.774 6.521 2.493 0.048 2.24
IRF4 + NR 434 ann H 0.066 0.47 0.672 ­0.025 1.136
IRF4 + NR 434 cb H 0.64 0.188 0.427 ­0.026 1.766
IRF4 + NR 434 plsr H 0.647 0.185 0.426 ­0.019 1.745
IRF4 + NR 434 rf H 0.498 0.257 0.502 0.005 1.503
IRF4 + NR 434 ann N 0.624 0.04 0.186 ­0.001 2.007
IRF4 + NR 434 cb N 0.682 0.035 0.175 ­0.001 2.054
IRF4 + NR 434 plsr N 0.819 0.018 0.13 ­0.005 2.649
IRF4 + NR 434 rf N 0.697 0.032 0.175 0.002 1.952
IRF4 + NR 434 ann Ca ­6.843 0.243 0.45 0.052 0.624
IRF4 + NR 434 cb Ca ­0.704 0.094 0.276 ­0.038 0.875
IRF4 + NR 434 plsr Ca ­1.379 0.109 0.314 0.003 0.725
IRF4 + NR 434 rf Ca ­0.345 0.075 0.251 0.012 0.934
IRF4 + NR 434 ann K ­0.257 0.025 0.151 0.005 0.92
IRF4 + NR 434 cb K ­0.95 0.027 0.15 ­0.011 1.045
IRF4 + NR 434 plsr K ­0.928 0.036 0.174 0.005 0.861
IRF4 + NR 434 rf K ­0.109 0.022 0.141 0.012 0.999
IRF4 + NR 434 ann Mg ­29.83 2.272 0.954 0.2 0.687
IRF4 + NR 434 cb Mg ­0.143 0.101 0.315 ­0.065 0.959
IRF4 + NR 434 plsr Mg ­0.674 0.148 0.375 ­0.007 0.828
IRF4 + NR 434 rf Mg ­0.041 0.093 0.302 0.015 1.01
IRF4 + NR 434 ann Na ­0.301 0.003 0.038 0 0.951
IRF4 + NR 434 cb Na ­20.05 0.006 0.057 ­0.003 0.902
IRF4 + NR 434 plsr Na ­8.223 0.005 0.065 ­0.001 0.505
IRF4 + NR 434 rf Na ­1.328 0.003 0.044 0.003 0.854
IRF4 + NR 434 ann P ­0.928 114.486 9.562 0.385 0.901
IRF4 + NR 434 cb P ­0.071 75.301 7.954 ­1.704 1.001
IRF4 + NR 434 plsr P ­0.921 109.123 10.099 ­0.02 0.763
IRF4 + NR 434 rf P ­0.04 69.833 7.765 0.03 1.008
IRF4 + NR 434 ann pH ­0.485 0.223 0.466 ­0.024 0.873
IRF4 + NR 434 cb pH 0.21 0.118 0.342 ­0.007 1.172
IRF4 + NR 434 plsr pH ­0.11 0.169 0.403 0 1.011
IRF4 + NR 434 rf pH 0.081 0.14 0.372 0.005 1.071
IRF4 + SVG1­2­11 ann Al 0.1 1.856 1.339 0.049 1.091
IRF4 + SVG1­2­11 cb Al 0.398 1.166 1.056 ­0.084 1.409
IRF4 + SVG1­2­11 plsr Al ­8.592 21.427 2.541 ­0.052 1.064
IRF4 + SVG1­2­11 rf Al 0.527 0.967 0.965 0.039 1.527
IRF4 + SVG1­2­11 ann TC 0.579 11.144 3.203 0.396 1.837
IRF4 + SVG1­2­11 cb TC 0.819 4.896 2.167 ­0.125 2.575
IRF4 + SVG1­2­11 plsr TC ­2.989 148.945 6.607 ­0.126 1.78
IRF4 + SVG1­2­11 rf TC 0.841 4.753 2.112 ­0.038 2.65
IRF4 + SVG1­2­11 ann H 0.273 0.385 0.599 ­0.015 1.321
IRF4 + SVG1­2­11 cb H 0.602 0.207 0.447 0.006 1.702
IRF4 + SVG1­2­11 plsr H 0.015 0.51 0.632 0.004 1.402
IRF4 + SVG1­2­11 rf H 0.617 0.195 0.437 ­0.004 1.724
IRF4 + SVG1­2­11 ann N 0.544 0.053 0.208 0.008 1.897
IRF4 + SVG1­2­11 cb N 0.741 0.027 0.161 ­0.011 2.121
IRF4 + SVG1­2­11 plsr N ­0.543 0.204 0.318 ­0.001 1.604
IRF4 + SVG1­2­11 rf N 0.812 0.02 0.138 ­0.002 2.446
IRF4 + SVG1­2­11 ann Ca ­2.12 0.129 0.319 0.016 0.809
IRF4 + SVG1­2­11 cb Ca ­2.862 0.157 0.353 0.018 0.736
IRF4 + SVG1­2­11 plsr Ca ­2.005 0.153 0.354 0.009 0.689
IRF4 + SVG1­2­11 rf Ca ­0.471 0.079 0.261 0.021 0.881
IRF4 + SVG1­2­11 ann K 0.084 0.02 0.13 ­0.002 1.117
IRF4 + SVG1­2­11 cb K 0.138 0.02 0.128 ­0.007 1.144
IRF4 + SVG1­2­11 plsr K ­1.611 0.079 0.204 0.005 0.908
IRF4 + SVG1­2­11 rf K 0.215 0.017 0.12 0.006 1.24
IRF4 + SVG1­2­11 ann Mg ­0.048 0.095 0.305 ­0.001 0.996
IRF4 + SVG1­2­11 cb Mg ­0.23 0.11 0.325 0.005 0.948
IRF4 + SVG1­2­11 plsr Mg ­2.735 0.434 0.491 0.007 0.806
IRF4 + SVG1­2­11 rf Mg 0.145 0.078 0.273 0.015 1.126
IRF4 + SVG1­2­11 ann Na ­0.315 0.003 0.037 ­0.001 0.96
IRF4 + SVG1­2­11 cb Na ­19.047 0.007 0.064 0.002 0.737
IRF4 + SVG1­2­11 plsr Na ­434.102 0.156 0.181 0.009 0.504
IRF4 + SVG1­2­11 rf Na ­0.525 0.003 0.039 0.002 0.936
IRF4 + SVG1­2­11 ann P ­2.677 151.246 10.146 1.297 0.92
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IRF4 + SVG1­2­11 cb P ­0.024 72.729 7.792 ­1.313 1.019
IRF4 + SVG1­2­11 plsr P ­9.319 673.771 16.989 0.786 0.663
IRF4 + SVG1­2­11 rf P 0.032 68.528 7.548 0.468 1.072
IRF4 + SVG1­2­11 ann pH ­0.111 0.171 0.408 0.015 0.988
IRF4 + SVG1­2­11 cb pH 0.156 0.126 0.353 ­0.015 1.138
IRF4 + SVG1­2­11 plsr pH ­2.977 0.566 0.627 ­0.012 0.785
IRF4 + SVG1­2­11 rf pH 0.346 0.098 0.312 0 1.28
IRF4 + SVG­1­2­11 + NR 434 ann Al ­0.05 2.094 1.432 0.019 1.018
IRF4 + SVG­1­2­11 + NR 434 cb Al 0.464 1.112 1.037 ­0.058 1.404
IRF4 + SVG­1­2­11 + NR 434 plsr Al 0.263 1.387 1.165 ­0.019 1.28
IRF4 + SVG­1­2­11 + NR 434 rf Al 0.536 0.944 0.954 0.037 1.541
IRF4 + SVG­1­2­11 + NR 434 ann TC 0.581 13.967 3.335 0.063 1.91
IRF4 + SVG­1­2­11 + NR 434 cb TC 0.798 5.648 2.3 ­0.212 2.461
IRF4 + SVG­1­2­11 + NR 434 plsr TC 0.778 6.235 2.463 ­0.065 2.229
IRF4 + SVG­1­2­11 + NR 434 rf TC 0.84 4.749 2.113 ­0.027 2.649
IRF4 + SVG­1­2­11 + NR 434 ann H 0.198 0.418 0.632 ­0.04 1.229
IRF4 + SVG­1­2­11 + NR 434 cb H 0.627 0.194 0.436 ­0.006 1.722
IRF4 + SVG­1­2­11 + NR 434 plsr H 0.498 0.267 0.505 ­0.014 1.509
IRF4 + SVG­1­2­11 + NR 434 rf H 0.605 0.201 0.443 ­0.002 1.699
IRF4 + SVG­1­2­11 + NR 434 ann N 0.59 0.048 0.207 0.008 1.7
IRF4 + SVG­1­2­11 + NR 434 cb N 0.764 0.024 0.15 ­0.016 2.305
IRF4 + SVG­1­2­11 + NR 434 plsr N 0.781 0.023 0.149 ­0.005 2.267
IRF4 + SVG­1­2­11 + NR 434 rf N 0.815 0.019 0.137 ­0.002 2.466
IRF4 + SVG­1­2­11 + NR 434 ann Ca ­0.457 0.088 0.266 0.011 0.905
IRF4 + SVG­1­2­11 + NR 434 cb Ca ­1.401 0.121 0.319 0 0.761
IRF4 + SVG­1­2­11 + NR 434 plsr Ca ­2.694 0.148 0.372 0.01 0.611
IRF4 + SVG­1­2­11 + NR 434 rf Ca ­0.354 0.077 0.255 0.019 0.903
IRF4 + SVG­1­2­11 + NR 434 ann K 0.076 0.02 0.131 ­0.008 1.08
IRF4 + SVG­1­2­11 + NR 434 cb K ­0.01 0.02 0.13 ­0.006 1.138
IRF4 + SVG­1­2­11 + NR 434 plsr K ­0.895 0.032 0.173 ­0.001 0.806
IRF4 + SVG­1­2­11 + NR 434 rf K 0.207 0.017 0.12 0.006 1.243
IRF4 + SVG­1­2­11 + NR 434 ann Mg ­0.079 0.099 0.309 0.012 0.986
IRF4 + SVG­1­2­11 + NR 434 cb Mg ­0.025 0.093 0.299 ­0.014 1.027
IRF4 + SVG­1­2­11 + NR 434 plsr Mg ­0.557 0.132 0.359 ­0.009 0.855
IRF4 + SVG­1­2­11 + NR 434 rf Mg 0.138 0.078 0.274 0.017 1.122
IRF4 + SVG­1­2­11 + NR 434 ann Na ­0.582 0.003 0.039 0.001 0.898
IRF4 + SVG­1­2­11 + NR 434 cb Na ­23.439 0.008 0.074 0.004 0.688
IRF4 + SVG­1­2­11 + NR 434 plsr Na ­7.947 0.005 0.065 ­0.001 0.511
IRF4 + SVG­1­2­11 + NR 434 rf Na ­0.645 0.003 0.039 0.002 0.932
IRF4 + SVG­1­2­11 + NR 434 ann P ­0.421 81.295 8.443 ­0.064 0.941
IRF4 + SVG­1­2­11 + NR 434 cb P ­0.078 71.454 7.796 ­1.137 1.014
IRF4 + SVG­1­2­11 + NR 434 plsr P ­1.348 122.642 10.846 ­0.262 0.71
IRF4 + SVG­1­2­11 + NR 434 rf P 0.02 69.58 7.589 0.552 1.075
IRF4 + SVG­1­2­11 + NR 434 ann pH ­0.059 0.157 0.393 ­0.015 1.023
IRF4 + SVG­1­2­11 + NR 434 cb pH 0.183 0.122 0.347 ­0.013 1.154
IRF4 + SVG­1­2­11 + NR 434 plsr pH ­0.241 0.185 0.427 0.002 0.944
IRF4 + SVG­1­2­11 + NR 434 rf pH 0.347 0.098 0.311 0 1.284
no pre­treatment ann Al ­0.285 2.529 1.557 0.059 0.969
no pre­treatment cb Al 0.362 1.264 1.111 ­0.072 1.319
no pre­treatment plsr Al 0.115 1.64 1.261 ­0.042 1.187
no pre­treatment rf Al 0.242 1.525 1.218 0.054 1.205
no pre­treatment ann TC 0.695 9.024 2.872 ­0.095 2.021
no pre­treatment cb TC 0.824 5.128 2.153 ­0.059 2.667
no pre­treatment plsr TC 0.727 6.63 2.548 ­0.037 2.189
no pre­treatment rf TC 0.771 6.604 2.507 0.032 2.229
no pre­treatment ann H 0.27 0.374 0.605 0.031 1.243
no pre­treatment cb H 0.631 0.191 0.433 ­0.023 1.721
no pre­treatment plsr H 0.592 0.212 0.459 0.004 1.611
no pre­treatment rf H 0.523 0.244 0.489 0.003 1.533
no pre­treatment ann N 0.596 0.041 0.198 0.005 1.769
no pre­treatment cb N 0.743 0.028 0.162 ­0.009 2.141
no pre­treatment plsr N 0.676 0.03 0.172 ­0.002 1.975
no pre­treatment rf N 0.69 0.032 0.177 0.002 1.917
no pre­treatment ann Ca ­3.928 0.143 0.352 0.028 0.747
no pre­treatment cb Ca ­0.401 0.092 0.27 ­0.035 0.89
no pre­treatment plsr Ca ­1.192 0.095 0.297 0.005 0.757
no pre­treatment rf Ca ­0.4 0.075 0.253 0.014 0.925
no pre­treatment ann K 0.018 0.022 0.137 0.001 1.043
no pre­treatment cb K ­0.865 0.025 0.144 ­0.004 1.103
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no pre­treatment plsr K ­0.167 0.02 0.137 0 1.009
no pre­treatment rf K ­0.087 0.022 0.14 0.011 1.011
no pre­treatment ann Mg ­0.562 0.145 0.365 0.042 0.874
no pre­treatment cb Mg ­0.106 0.1 0.312 ­0.065 0.97
no pre­treatment plsr Mg ­0.116 0.097 0.308 ­0.005 0.989
no pre­treatment rf Mg ­0.031 0.093 0.301 0.018 1.015
no pre­treatment ann Na ­3.777 0.005 0.053 0.003 0.79
no pre­treatment cb Na ­10.222 0.006 0.062 0 0.836
no pre­treatment plsr Na ­2.819 0.003 0.05 0.001 0.65
no pre­treatment rf Na ­1.196 0.003 0.043 0.003 0.878
no pre­treatment ann P ­0.966 122.897 10.064 0.517 0.854
no pre­treatment cb P ­0.107 75.897 8.019 ­1.422 0.993
no pre­treatment plsr P ­0.319 77.514 8.345 ­0.152 0.938
no pre­treatment rf P ­0.051 69.888 7.781 0.048 1.006
no pre­treatment ann pH ­0.306 0.195 0.433 0.021 0.942
no pre­treatment cb pH ­0.033 0.156 0.393 ­0.008 1.014
no pre­treatment plsr pH ­0.045 0.157 0.392 ­0.008 1.031
no pre­treatment rf pH 0.096 0.139 0.37 0.004 1.08
PCAL ann Al ­0.029 2.061 1.406 0.004 1.067
PCAL cb Al 0.197 1.562 1.233 ­0.023 1.203
PCAL plsr Al 0.057 1.724 1.293 ­0.035 1.166
PCAL rf Al 0.249 1.516 1.218 0.056 1.203
PCAL ann TC 0.652 8.995 2.952 ­0.061 1.8
PCAL cb TC 0.793 5.518 2.297 ­0.148 2.338
PCAL plsr TC 0.717 6.24 2.488 ­0.068 2.134
PCAL rf TC 0.757 6.528 2.496 0.039 2.146
PCAL ann H 0.189 0.394 0.625 ­0.022 1.15
PCAL cb H 0.538 0.223 0.464 ­0.026 1.596
PCAL plsr H 0.568 0.213 0.459 ­0.001 1.565
PCAL rf H 0.521 0.235 0.481 0.004 1.509
PCAL ann N 0.423 0.054 0.22 0.02 1.645
PCAL cb N 0.701 0.031 0.173 ­0.004 1.89
PCAL plsr N 0.667 0.029 0.17 ­0.004 1.933
PCAL rf N 0.664 0.034 0.181 0.004 1.817
PCAL ann Ca ­0.777 0.094 0.281 0.007 0.87
PCAL cb Ca ­2.497 0.138 0.339 ­0.016 0.765
PCAL plsr Ca ­1.417 0.101 0.306 0 0.741
PCAL rf Ca ­0.409 0.08 0.258 0.011 0.917
PCAL ann K ­0.929 0.045 0.187 0.02 0.803
PCAL cb K ­1.255 0.029 0.155 ­0.005 1.067
PCAL plsr K ­0.193 0.021 0.138 ­0.001 0.998
PCAL rf K ­0.143 0.023 0.143 0.011 0.973
PCAL ann Mg ­0.4 0.132 0.354 0.01 0.882
PCAL cb Mg ­0.103 0.101 0.314 ­0.042 0.981
PCAL plsr Mg ­0.144 0.101 0.314 ­0.005 0.982
PCAL rf Mg ­0.062 0.098 0.309 0.019 1
PCAL ann Na ­0.377 0.003 0.038 ­0.001 0.967
PCAL cb Na ­11.993 0.005 0.058 0 0.79
PCAL plsr Na ­3.468 0.004 0.051 0.001 0.644
PCAL rf Na ­1.198 0.003 0.043 0.003 0.889
PCAL ann P ­0.681 80.899 8.103 0.019 0.938
PCAL cb P ­0.436 74.15 7.918 ­1.156 0.927
PCAL plsr P ­0.433 71.914 7.927 ­0.021 0.908
PCAL rf P 0.036 60.975 7.013 0.002 1.042
PCAL ann pH ­0.511 0.236 0.474 0.021 0.883
PCAL cb pH 0.097 0.141 0.373 ­0.015 1.087
PCAL plsr pH ­0.089 0.169 0.406 ­0.008 1.008
PCAL rf pH 0.091 0.143 0.375 0.006 1.075
RHCC ann Al ­0.298 2.596 1.555 0.137 0.985
RHCC cb Al 0.261 1.402 1.161 ­0.076 1.295
RHCC plsr Al 0.137 1.598 1.245 0.012 1.201
RHCC rf Al 0.238 1.524 1.218 0.043 1.205
RHCC ann TC 0.755 7.184 2.58 ­0.052 2.198
RHCC cb TC 0.789 6.179 2.41 ­0.166 2.338
RHCC plsr TC 0.732 7.045 2.608 ­0.067 2.146
RHCC rf TC 0.778 6.422 2.476 0.009 2.248
RHCC ann H ­0.046 0.533 0.722 0.002 1.036
RHCC cb H 0.537 0.241 0.485 ­0.001 1.548
RHCC plsr H 0.479 0.277 0.519 ­0.008 1.444
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RHCC rf H 0.49 0.261 0.506 0.004 1.485
RHCC ann N 0.61 0.039 0.193 0.009 1.809
RHCC cb N 0.769 0.025 0.153 ­0.008 2.265
RHCC plsr N 0.701 0.029 0.169 ­0.004 1.995
RHCC rf N 0.694 0.032 0.176 0.001 1.935
RHCC ann Ca ­0.847 0.104 0.292 0.011 0.839
RHCC cb Ca ­0.624 0.079 0.259 ­0.044 0.913
RHCC plsr Ca ­0.962 0.093 0.291 0.002 0.777
RHCC rf Ca ­0.345 0.075 0.252 0.009 0.922
RHCC ann K ­1.572 0.038 0.178 0.008 0.862
RHCC cb K ­0.515 0.023 0.136 ­0.008 1.158
RHCC plsr K ­0.406 0.024 0.15 ­0.001 0.923
RHCC rf K ­0.055 0.022 0.138 0.01 1.024
RHCC ann Mg ­0.908 0.149 0.374 0.017 0.862
RHCC cb Mg ­0.101 0.099 0.31 ­0.059 0.98
RHCC plsr Mg ­0.01 0.09 0.296 0.001 1.031
RHCC rf Mg ­0.042 0.094 0.302 0.013 1.01
RHCC ann Na ­1.259 0.003 0.042 0.001 0.858
RHCC cb Na ­7.096 0.005 0.052 ­0.002 0.903
RHCC plsr Na ­2.357 0.003 0.048 0.001 0.681
RHCC rf Na ­1.244 0.003 0.043 0.003 0.874
RHCC ann P ­0.286 83.166 8.412 0.254 0.96
RHCC cb P ­0.038 72.124 7.746 ­1.41 1.04
RHCC plsr P ­0.341 83.167 8.569 0.053 0.916
RHCC rf P ­0.036 69.63 7.755 0.042 1.014
RHCC ann pH ­0.232 0.19 0.424 ­0.012 0.969
RHCC cb pH ­0.037 0.157 0.394 ­0.014 1.012
RHCC plsr pH 0.006 0.151 0.378 ­0.011 1.096
RHCC rf pH 0.071 0.141 0.374 0.003 1.067
stepAIC ann Al ­0.191 2.223 1.445 0.16 1.064
stepAIC cb Al 0.423 1.152 1.062 ­0.117 1.371
stepAIC plsr Al 0.253 1.364 1.157 0.015 1.29
stepAIC rf Al 0.226 1.553 1.228 0.062 1.197
stepAIC ann TC 0.591 10.659 3.041 ­0.264 2.037
stepAIC cb TC 0.803 5.339 2.266 ­0.052 2.466
stepAIC plsr TC 0.695 7.5 2.713 ­0.037 2.051
stepAIC rf TC 0.778 6.502 2.485 0.045 2.246
stepAIC ann H 0.315 0.345 0.58 0.034 1.309
stepAIC cb H 0.594 0.211 0.454 0 1.648
stepAIC plsr H 0.523 0.245 0.49 0.003 1.53
stepAIC rf H 0.525 0.243 0.489 0.004 1.532
stepAIC ann N 0.666 0.034 0.18 0.008 1.932
stepAIC cb N 0.728 0.028 0.164 ­0.009 2.085
stepAIC plsr N 0.636 0.033 0.181 ­0.001 1.884
stepAIC rf N 0.706 0.031 0.173 0.003 1.982
stepAIC ann Ca ­1.728 0.109 0.311 0.021 0.791
stepAIC cb Ca ­0.162 0.074 0.245 ­0.046 0.965
stepAIC plsr Ca ­0.854 0.087 0.282 0.008 0.796
stepAIC rf Ca ­0.516 0.078 0.26 0.015 0.896
stepAIC ann K ­0.972 0.041 0.185 0.017 0.8
stepAIC cb K ­0.067 0.023 0.133 ­0.005 1.194
stepAIC plsr K 0.017 0.019 0.13 ­0.001 1.065
stepAIC rf K ­0.07 0.022 0.139 0.01 1.008
stepAIC ann Mg ­1.79 0.209 0.426 0.04 0.799
stepAIC cb Mg ­0.038 0.093 0.301 ­0.056 1.007
stepAIC plsr Mg ­0.062 0.094 0.302 0.006 1.01
stepAIC rf Mg ­0.065 0.096 0.305 0.015 0.996
stepAIC ann Na ­7.165 0.007 0.059 0.005 0.796
stepAIC cb Na ­7.107 0.005 0.052 ­0.001 0.916
stepAIC plsr Na ­2.888 0.003 0.05 0 0.657
stepAIC rf Na ­1.593 0.003 0.045 0.003 0.885
stepAIC ann P ­0.931 94.434 8.908 0.019 0.945
stepAIC cb P 0 70.808 7.719 ­1.66 1.026
stepAIC plsr P ­0.416 80.903 8.533 ­0.063 0.923
stepAIC rf P ­0.056 69.372 7.779 0.098 1.005
stepAIC ann pH ­0.43 0.218 0.462 ­0.008 0.872
stepAIC cb pH 0.014 0.151 0.385 ­0.001 1.042
stepAIC plsr pH 0.079 0.14 0.371 ­0.015 1.086
stepAIC rf pH 0.097 0.137 0.369 0.004 1.082
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SVG­1­2­11 ann Al 0.021 1.983 1.379 0.059 1.075
SVG­1­2­11 cb Al ­0.05 1.994 1.371 0.042 1.106
SVG­1­2­11 plsr Al 0.137 1.598 1.243 ­0.027 1.209
SVG­1­2­11 rf Al 0.513 0.987 0.974 0.049 1.52
SVG­1­2­11 ann TC 0.553 12.93 3.348 0.184 1.884
SVG­1­2­11 cb TC 0.734 7.393 2.655 0.085 2.121
SVG­1­2­11 plsr TC 0.637 8.938 2.944 ­0.11 1.911
SVG­1­2­11 rf TC 0.836 4.718 2.123 0 2.627
SVG­1­2­11 ann H 0.11 0.458 0.668 0.022 1.14
SVG­1­2­11 cb H 0.278 0.367 0.6 ­0.009 1.252
SVG­1­2­11 plsr H 0.495 0.264 0.511 ­0.021 1.45
SVG­1­2­11 rf H 0.587 0.214 0.459 0.008 1.619
SVG­1­2­11 ann N 0.546 0.039 0.191 0.009 1.893
SVG­1­2­11 cb N 0.643 0.037 0.189 ­0.012 1.826
SVG­1­2­11 plsr N 0.589 0.039 0.198 ­0.008 1.706
SVG­1­2­11 rf N 0.797 0.021 0.142 0.003 2.382
SVG­1­2­11 ann Ca ­1.667 0.086 0.264 0 0.964
SVG­1­2­11 cb Ca ­3.158 0.139 0.359 ­0.003 0.685
SVG­1­2­11 plsr Ca ­1.343 0.103 0.309 0.014 0.736
SVG­1­2­11 rf Ca ­0.498 0.082 0.264 0.021 0.882
SVG­1­2­11 ann K ­0.094 0.022 0.14 0.003 0.991
SVG­1­2­11 cb K 0.174 0.02 0.127 ­0.012 1.153
SVG­1­2­11 plsr K ­0.142 0.019 0.135 0 1.013
SVG­1­2­11 rf K 0.192 0.017 0.12 0.007 1.17
SVG­1­2­11 ann Mg ­0.347 0.117 0.335 0.013 0.923
SVG­1­2­11 cb Mg ­0.286 0.114 0.332 ­0.021 0.925
SVG­1­2­11 plsr Mg ­0.154 0.101 0.315 0.006 0.966
SVG­1­2­11 rf Mg 0.194 0.074 0.267 0.014 1.148
SVG­1­2­11 ann Na ­0.35 0.003 0.038 0 0.95
SVG­1­2­11 cb Na ­1.446 0.003 0.04 ­0.003 0.931
SVG­1­2­11 plsr Na ­7.089 0.005 0.062 0.001 0.516
SVG­1­2­11 rf Na ­1.357 0.003 0.04 0.004 0.905
SVG­1­2­11 ann P ­0.104 78.887 8.037 ­0.13 1.001
SVG­1­2­11 cb P ­0.14 78.031 8.118 ­1.761 0.985
SVG­1­2­11 plsr P ­1.088 109.271 10.155 ­0.323 0.762
SVG­1­2­11 rf P 0.021 67.732 7.548 0.471 1.051
SVG­1­2­11 ann pH 0.062 0.143 0.376 ­0.002 1.063
SVG­1­2­11 cb pH 0.042 0.144 0.378 ­0.015 1.053
SVG­1­2­11 plsr pH ­0.064 0.158 0.395 ­0.004 1.016
SVG­1­2­11 rf pH 0.363 0.096 0.309 ­0.005 1.286
SVG­1­2­11 + IRF4 ann Al ­0.245 2.44 1.531 0.017 0.972
SVG­1­2­11 + IRF4 cb Al 0.234 1.571 1.229 ­0.097 1.2
SVG­1­2­11 + IRF4 plsr Al ­84.456 141.554 7.007 0.567 0.462
SVG­1­2­11 + IRF4 rf Al 0.487 1.071 1.012 0.034 1.459
SVG­1­2­11 + IRF4 ann TC 0.377 13.865 3.596 0.149 1.694
SVG­1­2­11 + IRF4 cb TC 0.736 7.778 2.694 0.163 2.082
SVG­1­2­11 + IRF4 plsr TC ­55.531 1742.886 26.977 1.488 0.381
SVG­1­2­11 + IRF4 rf TC 0.826 5.047 2.194 ­0.013 2.539
SVG­1­2­11 + IRF4 ann H 0.078 0.48 0.689 ­0.042 1.077
SVG­1­2­11 + IRF4 cb H ­0.001 0.517 0.706 0.004 1.077
SVG­1­2­11 + IRF4 plsr H ­35.454 20.454 3.083 0.356 0.439
SVG­1­2­11 + IRF4 rf H 0.568 0.224 0.47 0.003 1.58
SVG­1­2­11 + IRF4 ann N 0.4 0.058 0.232 0.008 1.549
SVG­1­2­11 + IRF4 cb N 0.61 0.045 0.203 ­0.016 1.721
SVG­1­2­11 + IRF4 plsr N ­57.865 7.296 1.681 0.094 0.381
SVG­1­2­11 + IRF4 rf N 0.787 0.022 0.146 0 2.321
SVG­1­2­11 + IRF4 ann Ca ­0.715 0.084 0.268 ­0.004 0.891
SVG­1­2­11 + IRF4 cb Ca ­2.28 0.162 0.329 ­0.009 0.849
SVG­1­2­11 + IRF4 plsr Ca ­36.225 0.955 0.675 ­0.041 0.515
SVG­1­2­11 + IRF4 rf Ca ­0.168 0.073 0.244 0.007 0.958
SVG­1­2­11 + IRF4 ann K ­0.237 0.023 0.143 ­0.006 1.004
SVG­1­2­11 + IRF4 cb K ­0.421 0.028 0.156 ­0.008 0.918
SVG­1­2­11 + IRF4 plsr K ­30.568 0.577 0.594 ­0.038 0.34
SVG­1­2­11 + IRF4 rf K 0.274 0.017 0.118 0.003 1.242
SVG­1­2­11 + IRF4 ann Mg ­0.329 0.119 0.338 ­0.005 0.907
SVG­1­2­11 + IRF4 cb Mg ­0.439 0.127 0.35 ­0.023 0.879
SVG­1­2­11 + IRF4 plsr Mg ­13.912 1.212 0.897 ­0.098 0.49
SVG­1­2­11 + IRF4 rf Mg 0.135 0.078 0.276 0.002 1.098
SVG­1­2­11 + IRF4 ann Na ­0.507 0.003 0.04 ­0.001 0.888

Table S1 – continued on the next page
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Table S1 – continued from previous page
Pre­treatments Model Soil property R2 MSE RMSE bias RPD
SVG­1­2­11 + IRF4 cb Na ­19.333 0.006 0.061 0.001 0.777
SVG­1­2­11 + IRF4 plsr Na ­202.6 0.097 0.233 0.022 0.281
SVG­1­2­11 + IRF4 rf Na ­0.4 0.003 0.038 0.001 0.965
SVG­1­2­11 + IRF4 ann P ­0.341 86.279 8.572 0.011 0.939
SVG­1­2­11 + IRF4 cb P ­1.191 133.208 10.364 ­0.715 0.828
SVG­1­2­11 + IRF4 plsr P ­14.752 820.441 24.617 ­0.47 0.414
SVG­1­2­11 + IRF4 rf P 0.06 67.103 7.467 0.158 1.063
SVG­1­2­11 + IRF4 ann pH ­0.137 0.176 0.412 ­0.004 0.979
SVG­1­2­11 + IRF4 cb pH ­0.131 0.17 0.408 ­0.008 0.992
SVG­1­2­11 + IRF4 plsr pH ­70.768 11.581 1.924 0.026 0.458
SVG­1­2­11 + IRF4 rf pH 0.322 0.102 0.319 ­0.005 1.249
SVG­1­2­11 + IRF4 + NR 434 ann Al 0.033 1.98 1.376 ­0.015 1.08
SVG­1­2­11 + IRF4 + NR 434 cb Al 0.002 1.92 1.355 ­0.056 1.105
SVG­1­2­11 + IRF4 + NR 434 plsr Al ­84.671 141.719 6.988 0.565 0.463
SVG­1­2­11 + IRF4 + NR 434 rf Al 0.506 1.028 0.992 0.032 1.485
SVG­1­2­11 + IRF4 + NR 434 ann TC 0.501 13.818 3.609 0.092 1.586
SVG­1­2­11 + IRF4 + NR 434 cb TC 0.72 8.274 2.788 0.049 2.019
SVG­1­2­11 + IRF4 + NR 434 plsr TC ­56.013 1760.657 27.079 1.458 0.379
SVG­1­2­11 + IRF4 + NR 434 rf TC 0.824 5.006 2.183 0.014 2.569
SVG­1­2­11 + IRF4 + NR 434 ann H ­0.016 0.513 0.707 0.011 1.068
SVG­1­2­11 + IRF4 + NR 434 cb H 0.131 0.433 0.647 0.054 1.179
SVG­1­2­11 + IRF4 + NR 434 plsr H ­36.175 20.882 3.112 0.356 0.434
SVG­1­2­11 + IRF4 + NR 434 rf H 0.541 0.239 0.486 ­0.001 1.521
SVG­1­2­11 + IRF4 + NR 434 ann N 0.193 0.085 0.285 0.02 1.218
SVG­1­2­11 + IRF4 + NR 434 cb N 0.641 0.04 0.188 ­0.01 1.948
SVG­1­2­11 + IRF4 + NR 434 plsr N ­58.464 7.385 1.687 0.093 0.38
SVG­1­2­11 + IRF4 + NR 434 rf N 0.777 0.022 0.148 0.002 2.318
SVG­1­2­11 + IRF4 + NR 434 ann Ca ­2.08 0.123 0.324 0.028 0.788
SVG­1­2­11 + IRF4 + NR 434 cb Ca ­1.642 0.14 0.321 ­0.005 0.82
SVG­1­2­11 + IRF4 + NR 434 plsr Ca ­36.106 0.951 0.674 ­0.041 0.516
SVG­1­2­11 + IRF4 + NR 434 rf Ca ­0.142 0.072 0.243 0.006 0.965
SVG­1­2­11 + IRF4 + NR 434 ann K ­0.317 0.025 0.151 ­0.007 0.919
SVG­1­2­11 + IRF4 + NR 434 cb K ­0.61 0.031 0.165 ­0.003 0.863
SVG­1­2­11 + IRF4 + NR 434 plsr K ­31.138 0.587 0.598 ­0.039 0.338
SVG­1­2­11 + IRF4 + NR 434 rf K 0.275 0.017 0.118 0.003 1.244
SVG­1­2­11 + IRF4 + NR 434 ann Mg ­0.217 0.105 0.321 ­0.006 0.948
SVG­1­2­11 + IRF4 + NR 434 cb Mg ­0.425 0.125 0.346 ­0.029 0.892
SVG­1­2­11 + IRF4 + NR 434 plsr Mg ­14.048 1.224 0.9 ­0.097 0.488
SVG­1­2­11 + IRF4 + NR 434 rf Mg 0.128 0.079 0.277 0.003 1.093
SVG­1­2­11 + IRF4 + NR 434 ann Na ­0.601 0.003 0.039 0.001 0.892
SVG­1­2­11 + IRF4 + NR 434 cb Na ­13.51 0.004 0.05 0 0.85
SVG­1­2­11 + IRF4 + NR 434 plsr Na ­200.571 0.096 0.232 0.021 0.287
SVG­1­2­11 + IRF4 + NR 434 rf Na ­0.341 0.003 0.038 0.001 0.971
SVG­1­2­11 + IRF4 + NR 434 ann P ­0.431 94.117 8.963 ­0.123 0.896
SVG­1­2­11 + IRF4 + NR 434 cb P ­0.948 118.427 9.781 ­0.759 0.859
SVG­1­2­11 + IRF4 + NR 434 plsr P ­14.921 831.006 24.737 ­0.526 0.412
SVG­1­2­11 + IRF4 + NR 434 rf P 0.072 66.896 7.436 0.137 1.07
SVG­1­2­11 + IRF4 + NR 434 ann pH ­0.139 0.172 0.413 0.013 0.963
SVG­1­2­11 + IRF4 + NR 434 cb pH ­0.121 0.172 0.408 ­0.003 0.992
SVG­1­2­11 + IRF4 + NR 434 plsr pH ­73.21 11.976 1.946 0.026 0.456
SVG­1­2­11 + IRF4 + NR 434 rf pH 0.329 0.101 0.317 ­0.005 1.255
SVG­1­2­11 + NR 434 ann Al 0.264 1.518 1.203 ­0.01 1.233
SVG­1­2­11 + NR 434 cb Al 0.019 1.915 1.338 ­0.022 1.13
SVG­1­2­11 + NR 434 plsr Al 0.107 1.675 1.271 ­0.028 1.182
SVG­1­2­11 + NR 434 rf Al 0.522 0.97 0.966 0.042 1.529
SVG­1­2­11 + NR 434 ann TC 0.508 12.849 3.335 0.433 1.804
SVG­1­2­11 + NR 434 cb TC 0.712 8.06 2.775 ­0.008 2.022
SVG­1­2­11 + NR 434 plsr TC 0.66 8.878 2.933 ­0.036 1.91
SVG­1­2­11 + NR 434 rf TC 0.831 4.854 2.143 0.024 2.632
SVG­1­2­11 + NR 434 ann H 0.123 0.466 0.676 0.045 1.102
SVG­1­2­11 + NR 434 cb H 0.178 0.43 0.649 ­0.016 1.15
SVG­1­2­11 + NR 434 plsr H 0.486 0.27 0.513 ­0.013 1.456
SVG­1­2­11 + NR 434 rf H 0.574 0.222 0.468 0.005 1.581
SVG­1­2­11 + NR 434 ann N 0.513 0.049 0.212 ­0.003 1.696
SVG­1­2­11 + NR 434 cb N 0.621 0.04 0.196 ­0.015 1.749
SVG­1­2­11 + NR 434 plsr N 0.607 0.039 0.195 ­0.006 1.752
SVG­1­2­11 + NR 434 rf N 0.786 0.021 0.144 0.005 2.375
SVG­1­2­11 + NR 434 ann Ca ­0.144 0.091 0.256 0.006 0.966
SVG­1­2­11 + NR 434 cb Ca ­3.173 0.139 0.359 ­0.003 0.685

Table S1 – continued on the next page
87



Table S1 – continued from previous page
Pre­treatments Model Soil property R2 MSE RMSE bias RPD
SVG­1­2­11 + NR 434 plsr Ca ­1.555 0.112 0.324 0.02 0.695
SVG­1­2­11 + NR 434 rf Ca ­0.502 0.083 0.265 0.021 0.881
SVG­1­2­11 + NR 434 ann K 0.048 0.02 0.133 0 1.057
SVG­1­2­11 + NR 434 cb K 0.086 0.022 0.132 ­0.008 1.113
SVG­1­2­11 + NR 434 plsr K ­0.291 0.022 0.144 ­0.001 0.951
SVG­1­2­11 + NR 434 rf K 0.186 0.017 0.12 0.007 1.167
SVG­1­2­11 + NR 434 ann Mg ­0.174 0.105 0.32 ­0.014 0.947
SVG­1­2­11 + NR 434 cb Mg ­0.258 0.114 0.33 ­0.021 0.936
SVG­1­2­11 + NR 434 plsr Mg ­0.083 0.094 0.305 0.012 0.989
SVG­1­2­11 + NR 434 rf Mg 0.177 0.076 0.269 0.014 1.137
SVG­1­2­11 + NR 434 ann Na ­2.559 0.005 0.05 0.003 0.827
SVG­1­2­11 + NR 434 cb Na ­3.351 0.004 0.049 ­0.002 0.755
SVG­1­2­11 + NR 434 plsr Na ­6.623 0.005 0.063 0 0.51
SVG­1­2­11 + NR 434 rf Na ­2.143 0.003 0.043 0.004 0.837
SVG­1­2­11 + NR 434 ann P ­0.61 107.351 9.36 0.601 0.897
SVG­1­2­11 + NR 434 cb P ­0.203 80.812 8.361 ­1.931 0.932
SVG­1­2­11 + NR 434 plsr P ­1.014 109.473 10.118 ­0.289 0.763
SVG­1­2­11 + NR 434 rf P ­0.007 68.8 7.623 0.483 1.042
SVG­1­2­11 + NR 434 ann pH ­0.009 0.152 0.386 0.006 1.044
SVG­1­2­11 + NR 434 cb pH 0.032 0.145 0.38 ­0.014 1.049
SVG­1­2­11 + NR 434 plsr pH ­0.064 0.157 0.393 0.005 1.027
SVG­1­2­11 + NR 434 rf pH 0.352 0.098 0.312 ­0.007 1.278
SVG­1­2­9 ann Al ­0.039 2.059 1.413 0.08 1.038
SVG­1­2­9 cb Al 0.145 1.694 1.282 ­0.062 1.149
SVG­1­2­9 plsr Al 0.095 1.684 1.28 ­0.036 1.165
SVG­1­2­9 rf Al 0.511 0.981 0.973 0.045 1.516
SVG­1­2­9 ann TC 0.49 11.863 3.192 0.079 1.985
SVG­1­2­9 cb TC 0.717 7.869 2.701 ­0.087 2.148
SVG­1­2­9 plsr TC 0.596 9.517 3.046 ­0.107 1.845
SVG­1­2­9 rf TC 0.833 4.84 2.147 0.014 2.604
SVG­1­2­9 ann H 0.221 0.411 0.629 ­0.012 1.208
SVG­1­2­9 cb H 0.281 0.371 0.602 0.009 1.246
SVG­1­2­9 plsr H 0.476 0.272 0.519 ­0.014 1.426
SVG­1­2­9 rf H 0.574 0.22 0.466 0.007 1.596
SVG­1­2­9 ann N 0.599 0.041 0.186 ­0.006 2.05
SVG­1­2­9 cb N 0.694 0.034 0.179 ­0.009 1.919
SVG­1­2­9 plsr N 0.54 0.043 0.206 ­0.007 1.635
SVG­1­2­9 rf N 0.791 0.021 0.143 0.003 2.37
SVG­1­2­9 ann Ca ­0.728 0.084 0.265 0 0.915
SVG­1­2­9 cb Ca ­1.905 0.13 0.329 ­0.013 0.771
SVG­1­2­9 plsr Ca ­1.643 0.113 0.325 0.018 0.693
SVG­1­2­9 rf Ca ­0.337 0.079 0.254 0.016 0.947
SVG­1­2­9 ann K ­0.11 0.023 0.142 ­0.005 1.027
SVG­1­2­9 cb K 0.223 0.019 0.123 ­0.017 1.19
SVG­1­2­9 plsr K ­0.192 0.02 0.138 0 0.988
SVG­1­2­9 rf K 0.26 0.016 0.116 0.006 1.225
SVG­1­2­9 ann Mg ­0.275 0.122 0.332 0.009 0.949
SVG­1­2­9 cb Mg ­0.289 0.116 0.334 ­0.029 0.922
SVG­1­2­9 plsr Mg ­0.224 0.108 0.325 0.012 0.936
SVG­1­2­9 rf Mg 0.191 0.074 0.267 0.012 1.146
SVG­1­2­9 ann Na ­0.54 0.003 0.039 0.001 0.903
SVG­1­2­9 cb Na ­2.079 0.003 0.045 0 0.862
SVG­1­2­9 plsr Na ­8.53 0.005 0.066 0.001 0.491
SVG­1­2­9 rf Na ­1.422 0.003 0.041 0.004 0.845
SVG­1­2­9 ann P ­0.217 84.147 8.449 0.102 0.94
SVG­1­2­9 cb P ­0.163 78.572 8.223 ­2.042 0.952
SVG­1­2­9 plsr P ­1.217 116.174 10.524 ­0.239 0.73
SVG­1­2­9 rf P ­0.002 69.391 7.65 0.502 1.036
SVG­1­2­9 ann pH ­0.125 0.169 0.409 ­0.005 0.972
SVG­1­2­9 cb pH ­0.058 0.16 0.398 ­0.011 1.004
SVG­1­2­9 plsr pH ­0.094 0.164 0.402 0 0.996
SVG­1­2­9 rf pH 0.352 0.098 0.312 ­0.006 1.277

The description of each pre­treatment is on Table 2.1; rf: random Forest; cb: Cubist; plsr: Partial Least Squares
Regression; TC: Total Carbon; R2: coefficient of determination; MSE: Mean Squared Error; RMSE: Root Mean
Square Error; RPD: Ratio of Performance to Deviation. The coefficients units correspond to Table 2.2.
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APPENDIX B — Acquired CHRIS PROBA images

Complementary information to the Chapter II.

Table S2: List of acquired CHRIS PROBA images.
Image code Selected images
CHRIS_I3_170608_38AD_41 no
CHRIS_I3_170608_38AD_41.hdf no
CHRIS_I3_170608_38AE_41.hdf no
CHRIS_I3_170608_38AF_41.hdf no
CHRIS_I3_170608_38B0_41.hdf no
CHRIS_I3_170608_38B1_41.hdf no
CHRIS_I3_170713_3A60_41 no
CHRIS_I3_170713_3A60_41.hdf yes
CHRIS_I3_170713_3A61_41.hdf yes
CHRIS_I3_170713_3A62_41.hdf no
CHRIS_I3_170713_3A63_41.hdf no
CHRIS_I3_170713_3A64_41.hdf no
CHRIS_I3_180811_4CDF_41 no
CHRIS_I3_180811_4CDF_41.hdf yes
CHRIS_I3_180811_4CE0_41.hdf no
CHRIS_I3_180811_4CE1_41.hdf no
CHRIS_I3_180811_4CE2_41.hdf no
Image codification:
<Instrument>_<TargetCode>_<YYMMDD>_<ImageID>_
<Version>.<FileType>.
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