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8OPXT_O̧Q>W>[W\XZQ̀SW>WROaÒT_>QZ>¹((/b+��b1/2)"º»''¼"4'�/º4*1)�%&)º½.¾(&b�1¾%.¿"¼b/
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RESUMO 

 

LÁZARO, Marcela Lopes. Predição de carbono, nitrogênio e fósforo no solo por 

espectroscopia de reflectância vis-NIR. 2020. 52p. Dissertação (Mestrado em Agronomia, 

Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural 

do Rio de Janeiro, Seropédica, RJ, 2018. 

 

A espectroscopia de reflectância na região do visível e infravermelho próximo (vis-NIR) vem 

sendo utilizada como método para predição de atributos do solo, sejam eles químicos, físicos, 

biológicos ou mineralógicos, apresentando resultados rápidos, sem gerar resíduos e não 

destrutivos quando comparados aos métodos convencionais de análise. O objetivo geral deste 

trabalho foi avaliar a acurácia da espectroscopia vis-NIR, aliada ou não a diferentes técnicas de 

pré-processamentos espectrais, na predição dos teores de C, N e P do solo. Este trabalho foi 

realizado em amostras de terra de um Planossolo Háplico, sob produção orgânica intensiva de 

hortaliças, no Sistema Integrado de Produção Agroecológica (SIPA), no município de 

Seropédica (RJ). Foram coletadas 294 amostras de terra, georreferenciadas num grid de 5x5m, 

na profundidade de 0-20 cm para a leitura espectral no espectrorradiômetro Field Spec 4. Os 

espectros, referentes a cada uma das amostras, foram gerados, exportados e analisados 

quantitativamente através de regressão por mínimos quadrados parciais (PLS), treinados por 

validação cruzada, validados com dados externos. Paralelamente, com a finalidade de melhorar 

as predições, foram testados seis pré-processamentos: absorbância, suavização, derivadas por 

Savitzky-Golay, variação normal padrão, correção multiplicativa do sinal e correção do 

contínuo. Os modelos de predição para C, N e P apresentaram valores médios de R² de, 0,82; 

0,88 e 0,78; RMSE médios de 1,16 g kg-¹; 0,09 g kg-¹; 22,26 mg g-¹ e RPIQ médios de 4,00; 

5,34 e 4,46, respectivamente. Os resultados mostraram que a espectroscopia de reflectância vis-

NIR é uma técnica que possui acurácia, sendo promissora para predição de C, N e P do solo 

inclusive sem a necessidade do uso de pré-processamentos espectrais. 

 

Palavras-chave: Sensoriamento próximo. Agricultura orgânica. Matéria orgânica. 

 

  



 
 

ABSTRACT 

 

LÁZARO, Marcela Lopes. Prediction of soil carbon, nitrogen and phosphorus by vis-NIR 

spectroscopy. 2020. 52p. Dissertation (Master in Agronomy, Soil Science) Instituto de 

Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2018. 

 

Visible and Near infrared (vis-NIR) reflectance spectroscopy has been used as a method to 

predict chemical, physical, biological or mineralogical soil attributes with fast and non-

destructive results comparing to conventional methods of analysis in Brazil. The aim of this 

work was to evaluate and determine the accuracy of vis-NIR spectroscopy with and without 

spectral pre-processing techniques, to predict of C, N and P soil contents. This work was carried 

out in the SIPA (Integrated System of Agroecological Production) in Seropédica – RJ, Brazil. 

A total of 294 soil samples were collect at 20 cm depth for chemical characterization of C, N 

and P and spectral readings, that were made on the Field Spec 4 spectroradiometer. The spectra 

for each sample were generated and quantitatively analysed by Partial Least Square regression, 

trained by cross validation and the best models were select and then applied to new soil samples 

in SIPA (external data). In parallel, six spectral pre-processes were tested to improve 

predictions: absorbance, smoothing, Savitzky-Goay derivatives, standard normal variation, 

multiplicative correction of the signal and continuum removal. The prediction models for C, N 

and P presented mean values of R² of 0.82; 0.88 and 0.78; mean RMSE of 1.16 g kg-¹; 0.09 g 

kg-¹; 22.26 mg g-¹ and RPIQ of 4.00; 5.34 and 4.46 for C, N and P, respectively. The results 

suggest that vis-NIR reflectance spectroscopy is a promising technique for the prediction of soil 

C, N and P and without the need for spectral pre-processing. 

 

Keywords: Proximal sensing. Organic agriculture. Organic matter. 

 

 

  



 
 

LISTA DE ABREVIAÇÕES E SÍMBOLOS 

 

Vis = Visível (Visible) 

NIR = Infravermelho próximo (Near infra-red) 

SIPA = Sistema integrado de produção agroecológica 

TFSA = Terra fina seca ao ar 

MOS = Matéria orgânica do solo 

PP = Pré-processamento 

ERD = Espectroscopia de reflectância difusa 

REF = Refletância 

ABS = Absorbância 

SMO = Suavização (Smoothing) 

SGD = Derivadas Savitzky-Golay (Savitzky-Golay derivative) 

SNV = Variação normal padrão (Standard normal variate) 

MSC = Correção multiplicativa de sinal(Multiplicative scatter correction) 

CRR = Correção do contínuo (Continuum removal) 

PLS = Mínimos quadrados parcias (Partial least square) 

NC = Número de componentes PLS 

Q1 = 1° quartil 

Q3 = 3° quartil 

R2 = Coeficiente de determinação 

RMSE = Raiz quadrada do erro médio (Root mean square error) 

RPIQ = Razão da performance interquartil (Ratio of performance to interquartile distance) 
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1. INTRODUÇÃO 

 

O solo tem grande influência sobre a produtividade agrícola nutrindo e fomentando toda 

a vida existente no planeta (AL e MOLDENHAUER, 1987; SPARKS, 1988). O Brasil, por 

suas características climáticas e ambientais, apresenta solos favoráveis à agricultura, com pouco 

mais de 7,5% do seu território, o que corresponde a, aproximadamente, 64.000.000 ha, 

destinados a esse fim (EMBRAPA TERRITORIAL, 2016; NASA, 2017). É sabido, no entanto, 

que a agricultura sob o cultivo convencional é uma das grandes responsáveis pela degradação 

das propriedades químicas e físicas do solo. Em contrapartida, há um aumento no estudo de 

sistemas de manejo que sejam capazes de balancear as necessidades do solo e das culturas além 

de focar na sustentabilidade dos recursos naturais e na produtividade das culturas a longo prazo 

(LAL & PIERCE, 1991). 

Nesse contexto, técnicas agroecológicas de manejo vêm ganhando espaço por partirem 

de um movimento social que implica na gestão da agricultura a partir de um modelo sustentável, 

no qual não se utiliza substâncias sintéticas e haja o respeito pelo meio ambiente e pelos ciclos 

naturais, com ênfase nas complexas relações existentes entre pessoas, cultivos, solo e a água, 

ao invés da maximização da produção de uma atividade em especial (VEIGA, 2003; ASSIS, 

2006). Com base nesses princípios, em 1993 foi criado o Sistema Integrado de Produção 

Agroecológica (SIPA), em uma parceria da Embrapa Solos, Embrapa Agroecologia, Pesagro-

RJ, Universidade Federal Rural do Rio de Janeiro (UFRRJ) e Colégio Técnico da UFRRJ, para 

o desenvolvimento e incentivo do estudo, pesquisa e extensão em agroecologia e agricultura 

orgânica. Dentro do SIPA, sob um Planossolo, foi instalado um módulo de produção orgânica 

intensiva de hortaliças, como protótipo de uma produção em escala real visando estreitar os 

estudos em agroecologia de forma integrada com o produtor orgânico, desde o cultivo até a 

venda dos produtos. Também é objetivo do módulo gerar conhecimentos que contribuam para 

a sustentabilidade dos sistemas agroecológicos e, entre outros aspectos, para o entendimento da 

dinâmica da matéria orgânica do solo (MOS) através do monitoramento de nutrientes utilizando 

fontes de base vegetal (MATA, 2012). 

A MOS é um atributo chave para avaliação da qualidade do solo devido à sua capacidade 

de influenciar suas propriedades químicas, físicas e biológicas e, com isso, ser sensível às 

modificações de uso e manejo. Adicionada ao solo, a matéria orgânica proporciona a entrada 

de carbono (C) e nutrientes como fósforo (P), potássio (K), enxofre (S), cálcio (Ca), magnésio 

(Mg) e, principalmente, nitrogênio (N), que não provém da fração inorgânica do solo. A 

quantificação da MOS e dos teores de nutrientes no solo é feita, convencionalmente, através de 

análises químicas laboratoriais de forma lenta e onerosa, gerando resíduos tóxicos provenientes 

de reagentes químicos (SOUSA JUNIOR et al, 2011). 

Nas últimas décadas, o uso de técnicas de sensoriamento próximo vem ganhando 

destaque na análise do solo, especialmente as técnicas espectroscópicas aliadas às análises 

quimiométricas para a quantificação da MOS e de outros atributos do solo. Para o estudo 

envolvendo MOS, grande parte dos trabalhos científicos envolvem as faixas espectrais do 

visível (vis) e do infravermelho próximo (NIR) do espectro eletromagnético, localizadas entre 

350-750 nm e 750-2500 nm, respectivamente (COZZOLINO & MORÓN; VISCARRA 

ROSSEL et. al., 2006). Nessas faixas do espectro são observadas relações da interação da 

energia eletromagnética incidida e refletida na amostra de solo com sua mineralogia, umidade, 

granulometria e material orgânico. Essa interação é detectada por sensores e apresentada em 

diferentes comprimentos de onda, que podem ser processados, avaliados qualitativamente, 

comparados e submetidos a análises quimiométricas, ou seja, analisados quantitativamente. 

Todo esse processo ocorre de forma rápida, ambientalmente segura, econômica e não destrutiva 
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à amostra (ARAÚJO; DEMATTÊ; BELLINASO, 2013). Além disso, está sendo desenvolvido 

equipamentos vis-NIR portáteis com a possibilidade de análise no campo, sem a necessidade 

de coleta e transporte de amostras de terra para o laboratório, tornando o processo menos 

oneroso. Dessa forma, há a possibilidade e o interesse em utilizar a espectroscopia vis-NIR 

como ferramenta para a determinação da MOS, especialmente em um contexto agroecológico 

coerente, ou seja, sem a necessidade de uso e descarte de reagentes químicos sintéticos. 

 

Diante do exposto, a hipótese deste trabalho é que a espectroscopia de reflectância vis-

NIR pode ser utilizada para a predição razoavelmente boa (R² > 0,6) dos teores de C, N e P do 

solo. Sendo assim, o objetivo geral deste trabalho foi avaliar a acurácia da espectroscopia vis-

NIR, aliada ou não a diferentes técnicas de pré-processamentos espectrais, na predição dos 

teores de C, N e P de solo identificado como Planossolo Háplico, sob sistema orgânico de 

produção de hortaliças em Seropédica, Rio de Janeiro. 
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2. REVISÃO DE LITERATURA 

 

2.1. Matéria Orgânica do Solo 

 

O solo pode ser definido como corpo natural dinâmico que ocupa a maior parte do manto 

da Terra e que é constituído por materiais minerais e orgânicos (EMBRAPA, 2009). A porção 

orgânica é chamada de matéria orgânica do solo e, por sua vez, pode ser definida como material 

resultante da deposição de resíduos de plantas e animais, vivos ou mortos, em vários estágios 

de desenvolvimento (THENG, 1989).  

A partir da entrada desses resíduos orgânicos de diversas naturezas há uma série de 

transformações biológicas, químicas e físicas contínuas formando, gradativamente, um sistema 

complexo de substâncias com características e funções variadas (CAMARGO et al. 1999). 

Essas substâncias são chamadas de húmicas e não húmicas, de acordo com seu grau de 

complexidade. As substâncias não húmicas são as constituídas por estruturas biologicamente 

ativas e quimicamente bem definidas, como as alifáticas e aromáticas de baixo peso molecular. 

Essas são utilizadas como substratos para os microrganismos e por isso têm rotatividade 

relativamente rápida no solo (ANDERSON, 1979). Por outro lado, substâncias húmicas são 

aquelas constituídas por macromoléculas, mais estabilizadas e persistentes no sistema, quando 

comparada às anteriores. Como as substâncias húmicas são mais resistentes à decomposição, 

acabam ficando ali acumuladas, através de diversos mecanismos, formando então a principal 

reserva orgânica dos solos.  

A decomposição da MOS depende principalmente das condições climáticas e edáficas 

do ambiente, da comunidade de decompositores e da qualidade do solo a ser decomposto. 

(ANDERSON & SWIFT, 1983). Em solos tropicais, como é o caso dos solos brasileiros, o 

processo de decomposição da MOS é muito intenso, de forma que a umidade e a temperatura 

são os fatores que mais influenciam as taxas de mineralização no solo, ou seja, o processo onde 

as substâncias orgânicas são convertidas em substâncias inorgânicas (STANFORD et al. 1973) 

A matéria orgânica humificada influencia as várias funções e processos biológicos, 

físicos e químicos que ocorrem no solo como a ciclagem de nutrientes, complexação de 

elementos tóxicos, estruturação das partículas, infiltração e retenção de água, susceptibilidade 

à erosão, além de ser fonte primária de nutrientes às plantas, especialmente de C, N, P, S e 

micronutrientes (GREGORICTH et al,1994; REEVES, 1997; TAM et al, 1998; SHEPHERD 

et al, 2002; CONFORTI et al, 2013). Nesse sentido, a MOS é um atributo decisivo para a 

definição e monitoramento da qualidade do solo, além de ocupar uma posição central na 

manutenção dos ambientes agrícolas (FRIGHETTO, 2000).  

Em solos sob vegetação natural, a MOS encontra-se em equilíbrio dinâmico, com teores 

praticamente constantes ao longo do tempo (D’ANDRÉA et al., 2004).  Porém a transformação 

das áreas de vegetação natural em áreas de cultivo agrícola implica em mudanças na estrutura 

e no funcionamento natural do solo, alteração na dinâmica da matéria orgânica nesses 

ambientes, influenciando em novas taxas de adição e perdas de MOS no sistema (EBELING et 

al., 2008; NUNES et al., 2011). Dessa forma, um novo equilíbrio é atingido conforme as 

características do sistema de manejo adotado e das condições edafoambientais da área 

(FREITAS et al., 2000). 

Alguns sistemas de cultivo agrícola, chamados sustentáveis, consideram a conservação 

e ampliação da biodiversidade além da produção através de princípios ecológicos, 

socioeconômicos e agronômicos (ALTIERI, 1989; ASSIS, 2006). Dessa forma, diversas 

técnicas alternativas são utilizadas como a adubação orgânica, através do uso da matéria 

orgânica decomposta como fonte de nutrientes; cobertura vegetal do solo; rotação de culturas 

vegetais e etc. Nesse contexto, há nesses sistemas sustentáveis, entre outros fatores, a intenção 

de aumentar a concentrações e a qualidade da MOS. 
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2.2. Sensoriamento Próximo do Solo 

 

Em uma produção agrícola é importante monitorar os fatores que influenciam o 

ambiente de cultivo para que sejam tomadas as estratégias de manejo, independentemente de 

qual seja o sistema adotado. Sabida a importância da MOS, sua quantificação através das 

concentrações de C, N e P pelos métodos tradicionais de laboratório demanda tempo; uso de 

reagentes químicos tóxicos, como por exemplo ácido sulfúrico, ácido clorídrico, molibdato de 

amônio, que nem sempre são descartados de forma ambientalmente segura (EMBRAPA, 2009). 

Além disso, essas análises geralmente são caras, demoradas e restringem o número de amostras 

representativas de uma região (VISCARRA ROSSEL, 2011). 

A partir da década de 1970, começaram a ser desenvolvidos métodos de análises 

utilizando sensores, que têm a capacidade de medir parâmetros do solo de forma rápida, com 

uma boa relação custo benefício dando origem a dados de qualidade (MCBRATNEY et al., 

2006; SIQUEIRA et al., 2010). Além disso, para a análise com sensores não é necessário o uso 

de reagentes químicos, o que é seguro para o meio ambiente e proporciona segurança condições 

de trabalho para os analisadores (ROSSEL e BEHREN, 2010). 

Os sensores podem ser divididos conforme à proximidade ao alvo, que nesse caso passa 

a ser o solo. Enquanto os sensores remotos obtêm informações sem que haja contato físico, os 

sensores próximos obtêm sinais quando o detector está em contato direto ou a uma distância de 

no máximo a 2 metros do solo (VISCARRA ROSSEL e MCBRATNEY, 1998; VISCARRA 

ROSSEL et al., 2010). As vantagens do sensoriamento próximo é que suas análises podem ser 

realizadas em superfície e subsuperfície e com o tempo, esses sensores estão se tornando 

menores, mais rápidos, mais precisos, mais eficientes em energia e mais inteligentes 

(VISCARRA ROSSEL et al, 2011). 

As técnicas mais pesquisadas para sensoriamento proximal de solo incluem métodos 

óptico (reflectância espectral), elétrico (condutividade elétrica) e eletroquímico (elétrons ions 

seletivos) (GEBBERS & ADAMCHUK, 2010; ADAMCHUCK et al., 2015). Os 

eletroquímicos mais comuns utilizam membranas íon-seletivas para detectar a atividade de íons 

como hidrogênio potássio e nitrato. A condutividade elétrica aparente do solo pode ser utilizada 

como indicador de características como salinidade, textura, umidade, densidade, lixiviação 

(CORWIN & LESCH, 2005). A reflectância espectral, em diversos comprimentos de onda, 

pode ser utilizada para determinação de cor, classe de solos, composição mineralógica, teor de 

umidade, granulometria e, com o auxílio de técnicas quimiométricas, a predição do teor de 

MOS (EPIPHANIO et al., 1992; VISCARRA ROSSEL et al., 2008). 
 

2.3. Espectroscopia de Reflectância Difusa 

 

A espectroscopia de reflectância difusa (ERD) é uma técnica que, a partir de dados 

espectroscópicos da energia, registra o reflexo da luz ou de ondas ou partículas de uma 

superfície opaca através de um sensor. O princípio da ERD é fundamentado na Lei de Beer-

Lambert, que conceitua que quando uma energia eletromagnética incide sobre um alvo, parte 

dos vários comprimentos de onda incididos sobre ele são absorvidos por essa amostra, parte 

atravessa sua superfície e parte é refletida de forma difusa, ou seja, espalhada em muitos 

ângulos (STONER & BAUMGARDNER, 1986).  Essa energia é registrada por um sensor e 

decomposta em diferentes comprimentos de onda, de forma contínua ao longo do espectro 

eletromagnético, onde ficam definidas suas feições, que são conhecidas como curva espectral 

ou assinatura espectral (NOVO, 1992; MORAES, 2002). Uma ilustração de todo esse processo 

pode ser observada na Figura 1. 
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Figura 1. Ilustração da luz incidindo em uma amostra sólida e as frações de energia refletidas 

de forma difusa pela mesma e captadas por um sensor (Adaptado de STEMBERG, 

VISCARRA ROSSEL, MOURAZEN 2010). 

 

O solo é um alvo opaco, tem capacidade intrínseca de absorver e refletir luz incidente. 

Dessa forma, conforme variam as moléculas presentes na amostra de solo, varia a resposta das 

mesmas à radiação, formando bandas que são registradas no espectro eletromagnético gerando 

curvas espectrais específicas (MARTIN-NETO et al., 1996; DALMOLIN et al., 2005). Dessa 

forma, a partir de uma leitura de ERD é possível obter informações sobre atributos e 

características do solo como a presença de minerais (VISCARRA-ROSSEL et al., 2006); teores 

de argila, areia, silte (BEN-DOR et al., 2008); carbono orgânico e matéria orgânica 

(MOUAZEN et al., 2007; DEMATTÊ., 2011). 

As medições dos atributos do solo acontecem de forma direta ou indireta. Para medições 

diretas, as relações são baseadas em fenômenos físicos que afetam a refletância da luz em uma 

parte específica do espectro. Para medições indiretas, as relações são realizadas a partir de um 

domínio finito e os efeitos combinados de vários atributos podem estar relacionados a uma 

determinada característica do solo. Exemplos de medições diretas e indiretas são o teor de água 

e a MOS, respectivamente. Para a MOS, suas medições são possíveis graças às medições 

indiretas, a partir das funções de pedotransferência, que predizem certas propriedades do solo 

a partir de outras obtidas mais facilmente (BOUMA, 1989; BUDIMAN, 2003). 

 

2.4. Espectroscopia vis-NIR 

 

Para o estudo de MOS, as faixas do espectro eletromagnético mais comumente utilizada 

são as do visível (vis\visible - 350 a 750 nm) e infravermelho próximo (NIR\near infrared - 750 

a 2.500 nm). Essas porções estão representadas na Figura 2. 

A espectroscopia de reflectância vis-NIR tem sido apontada alternativa na análise de 

solos, pela rapidez, não utilização de reagentes químicos e não destrutividade à amostra 

(VISCARRA ROSSEL et al., 2006; DEMATTÊ et al., 2006; BEN-DOR et al., 2008; 

VASQUES et al., 2008). Dessa forma, são feitas medições simultâneas e repetíveis, o que 

proporciona significativa vantagem sobre as medições através das análises convencionais em 

laboratório (PASQUINI, 2018). 
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Figura 2. Espectro eletromagnético com detalhe para as porções do visível (350 a 750 nm), 

NIR - infravermelho próximo (750 a 2500 nm), além do MIR – infravermelho médio (2500 

a 25000nm) e FIR – infravermelho distante (25000 a 100000 nm). 

 

Essas análises são possíveis porque ao absorver a radiação vis-NIR, as moléculas que 

compõem a amostra de solo têm seus elétrons externos promovidos do estado fundamental à 

excitação. A diferença de energia entre esses dois estados ou a alteração na amplitude da 

vibração, alongamento ou flexão molecular é emitida e registrada pelo sensor através de curvas 

espectrais com feições facilmente distinguíveis de absorção e reflectância. Essas feições vis-

NIR estão relacionadas aos atributos do solo como água livre e argila mineral; matéria orgânica 

e minerais não coloridos, como óxidos de ferro, carbonatos e sais e podem ser observadas na 

Figura 3 (STONER; BAUMGARDNER, 1981; BEN DOR et al., 1999; DEMATTÊ, 2002). 

 

 
 

Figura 3. Curvas espectrais típicas de solos nas porções vis (A) e NIR (B) do espectro 

eletromagnético. (Adaptado de VISCARRA ROSSEL et al, 2011). 

 

As medições a partir de dados espectrais vis-NIR podem ser diretas ou indiretas. Para 

medições diretas, as relações são baseadas em fenômenos físicos que afetam a refletância da 

luz em uma parte específica do espectro, como por exemplo, a mineralogia do solo ou o teor de 
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água. Para as medições indiretas, as relações são determinadas por uma combinação de vários 

atributos relacionados a uma determinada característica, como por exemplo a MOS, devido às 

conotações, flexões e alongamento dos grupamentos de NH, OH e CH (VISCARRA-ROSSEL 

et al, 2006). As absorções no vis-Nir das moléculas orgânicas, dependem dos grupamentos 

funcionais, chamados cromóforos, que contêm elétrons de valência de baixa excitação energia. 

Dessa forma, são fornecidas informações sobre a estrutura dos grupos funcionais presentes na 

matéria orgânica, bem como sobre a natureza de suas ligações químicas e sua reatividade 

(STEVENSON, 1994). Além disso, a presença de SOM afeta a cor do solo e, portanto, poderia 

estar diretamente relacionado à região visível do espectro (BAUMGARDNER et al, 1970). 

Dessa forma, as curvas espectrais do solo podem ser utilizadas tanto para o monitoramento da 

qualidade, fertilidade e manejo do solo de áreas ambientais e agrícolas, através das análises 

qualitativas (SHEPHERD & WALSH, 2007). 

A partir do final da década de 1990, com o avanço da agricultura de precisão, muitos 

estudos têm sido realizados usando a ERD Vis-NIR também para análises quantitativas de 

atributos do solo (DEMATTÊ e GARCIA, 1999; VISCARRA ROSSEL et al., 2006). Os 

atributos quantificados variaram entre mineralogia, química e física do solo (VISCARRA 

ROSSEL et al., 2006; GENU & DEMATTÊ, 2011), levantamentos de solos (DEMATTÊ et al., 

2004; VISCARRA ROSSEL e WEBSTER, 2011), mapeamento digital de solos (VISCARRA 

ROSSEL & MCBRATNEY, 2008), avaliação da qualidade do solo (BEN-DOR et al., 2009; 

MOUAZEN et al., 2005), agricultura de precisão (VISCARRA ROSSEL & CHEN, 2011), e 

especialmente para determinação de C e MOS (VISCARRA ROSSEL et al, 2006; VASQUES 

et al, 2009). 

 

2.4.1. Vis-NIR e MOS em solos brasileiros 

 

No Brasil, do ponto de vista geográfico, predominam os solos sob domínio climático 

tropical, que ocorrem na faixa que se estende desde o extremo norte do Estado de Roraima 

(aproximadamente 5 graus N) até a cidade de São Paulo (aproximadamente 23,5 graus ao sul 

do equador). Mais ao sul desta latitude de São Paulo ocorrem solos sob domínio climático 

subtropical, que possuem características diferentes quando comparados aos outros solos 

distribuídos pelo Brasil (compreendendo parte do estado de São Paulo, Paraná, Santa Catarina 

e Rio Grande do Sul). 

Apesar da crescente disponibilidade dos equipamentos utilizados para a realização das 

análises espectrais Vis-NIR, associado a maior demanda, oportunidades de pesquisa e aplicação 

da técnica, poucos trabalhos dessa técnica em solos brasileiros têm sido publicados, quando em 

comparação com os estudos feitos e publicados em solos do resto do mundo. Uma pesquisa no 

banco de dados de periódicos Scopus mostra essa relação entre as publicações a respeito desse 

tema e pode ser observado na Figura 4. 
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Figura 4. Número de publicações científicas abordando o uso de técnicas espectroscópicas Vis-

NIR em solos mundiais e em solos brasileiros (Dados retirados do banco de dados Scopus 

em dezembro de 2019). 

 

Os estudos referentes aos últimos 5 anos que tratam a respeito da predição de C, N, P a 

partir de dados espectroscópicos de solos brasileiros foram compilados, conforme mostra a 

Tabela 1. 

Terra tem se dedicado à pesquisa de dados de uma Biblioteca espectral de solos que 

compreende amostras de terra de regiões de produção de cana-de açúcar nos estados de Mato 

Grosso do Sul, Minas Gerais, São Paulo e Goiás. Seus últimos trabalhos focaram em promover 

uma melhor acurácia nas predições de C orgânico, seja com o teste e escolha dos melhores 

métodos de análise multivariada e pré-procesamentos espectrais (TERRA, 2015), como com 

trabalhos inovadores abordando a fusão de bandas pertencentes ao vis-Nir e ao Mir para criação 

de melhores preditores de C orgânico em comparação com análises dessas respostas espectrais 

feitas separadamente (TERRA, 2019). 

Na região Norte do Brasil, Almeida e colaboradores indicam que em áreas da bacia do 

Acre somente sejam usadas quantificações de N por espectroscopia NIR em caso de grandes 

volumes de processamento de dados, pois o método nesse caso não substituiu a exatidão obtida 

através das análises elementar. Araújo pesquisou solos Amazônicos, mas de Terra preta do 

índio no Pará, ou seja, com grandes quantidades antrópicas de MOS. Foi comparada a precisão 

e eficiência dos métodos de vis-NIR e MIR. Apesar de obterem um bom ajuste em ambos os 

sensores, os modelos de previsão baseados nos dados do MIR superaram os com base em dados 

vis – NIR nesses tipos de solos. Além disso, ambos subestimaram o conteúdo de C desses solos. 

Por outro lado, Pinheiro e colaboradores obtiveram em solos da Amazônia alta aplicabilidade 

nas técnicas espectroscópicas vis-NIR em relação aos conteúdos de C e N e enquanto 

encontraram limitações aos modelos de P daqueles solos. 

Em clima subtropical, Moura-Bueno e Dotto exploram técnicas de pré-processamentos 

espectrais e análises multivariadas na predição de C, com o espectro vis-NIR completo ou 

reduzido, nos estados do Rio Grande de Sul e Paraná. Felix (2016) observou a influência da 

granulometria das amostras de terra do Paraná, com melhores resultados em particulas menores 

que de 0,2mm. Também no Paraná, Carra (2019), obteve bons ajustes dos modelos preditivos 

C e N para solos sob diferentes condições climáticas e usos de terra. 
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Tabela 1. Principais trabalhos no país abordando espectroscopia vis-NIR para predição de 

C, N e P do solo nos últimos 5 anos. 

Referências Local N* Atributo PP R² RMSE RPD 

Carra, 2019 PR 431 C PCA 0,93 4,78 0,71 

Terra, 2019 
SP, MG, 

MS, GO 
1259 C SMV 0,69 3,38 - 

Moura-Bueno, 2019 RS 841 C 

PLSR 0,71 0,58 - 

MLR 0,71 0,56 - 

SNV 0,63 0,64 - 

RF 0,62 0,63 - 

Dotto, 2018 SC 595 C 

PLSR 0,74 0,58 - 

PCR 0,73 0,59 - 

MLR 0,74 0,59 - 

SVM 0,78 0,53 - 

RF 0,76 0,58 - 

BMA 0,74 0,59 - 

WAPLS 0,65 0,62 - 

GPR 0,73 0,61 - 

ANN 0,69 0,64 - 

Pinheiro, 2017 AM 434 C PLSR 0,71 5,69 1,84 

Dotto, 2017 SC 299 C 
PLSR 0,88 0,34 - 

SVM 0,86 0,36 - 

Félix, 2016 PR 214 C PLSR 0,57 - 1,55 

Terra, 2015 
SP, MG, 

MS, GO 
1254 C SVM 0,65 0,16 - 

Araújo, 2015 PA  C PLSR 
0,90 1,50 - 

0,05 6,40 - 

Carra, 2019 PR  N PCA 0,93 4,78 0,71 

Félix, 2016 PR 214 N PLSR 0,68 - 1,92 

Almeida et al. 2016 AC 168 N PLSR 0,84   

Carra, 2019 PR 431 P PCA 0,685 0,83 6,2 

Pinheiro, 2017 AM 434 P PLSR 0,11 1,98 1,05 

Félix, 2016 PR 214 P PLSR 0,37 - 1,26 

Terra, 2015 
SP, MG, 

MS, GO 
1254 P SVM 0,24 0,37  

* N - Número de amostras. 

 

2.5. Quimiometria 

 

A quimiometria pode ser definida como uma área da química que, através de 

ferramentas matemáticas, físicas e computacionais, tem o objetivo de planejar ou selecionar 

condições ótimas de medidas e experimentos, extraindo o máximo de informação química 

relevante (FERREIRA et al, 1999). A quimiometria teve origem a partir da popularidade do 

uso da análise multivariada, para quantificar uma variável de interesse, com o tratamento e 

predição de dados químicos através de modelos estatísticos. 

Os modelos estatísticos determinam a relação entre propriedades medidas e 

concentrações químicas a partir de dois conjuntos de variáveis. Dessa forma, é desenvolvido 

então um modelo de treinamento para um conjunto de amostras cujas propriedades são 

conhecidas. Uma vez estabelecido, esse modelo de treinamento, ele é utilizado para classificar 

novas amostras, com concentrações desconhecidas da mesma propriedade de um novo 
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conjunto, chamado de validação, para então determinar quanto das propriedades medidas estão 

relacionadas de fato às concentrações químicas (SANCHEZ & KOWALSKI, 1988; 

BRERETON, 2003). Para estudos com espectrometria, por exemplo, os modelos determinam 

o quanto as curvas espectrais das amostras relacionam-se com informações químicas do solo, 

como C, N e P. Um esquema representando as etapas para a criação de um modelo pode ser 

visto na Figura 5. 

 

 
 

Figura 5. Diagrama representando o processo de treinamento de um modelo quimiométrico. 

(Adaptado de FERREIRA, 1999). 

 

Para a criação dos modelos estatísticos, são necessárias inúmeras análises multivariadas, 

ou seja, A regressão por mínimos quadrados parciais (PLSR, do inglês Partial Least Squares 

Regression) é uma das técnicas mais comuns para a calibração e predição de modelos espectrais 

de solos (MCCARTY et al, 2002). 

 

2.5.1. Pré-processamento de curvas espectrais 

 

A aquisição de dados espectrais não fornece apenas informações relevantes sobre a 

presença, ausência e concentração de compostos químicos. Dependendo da técnica de aquisição 

de espectros, equipamentos, condições experimentais, acessórios utilizados, uma grande 

quantidade de informação relativa aos fenômenos físicos, erros aleatórios e sistemáticos 

também estarão presentes no conjunto de dados adquiridos. Essas interferências podem causar 

não-linearidades entre os espectros e as concentrações dos componentes de interesse resultando 

em ruído aleatório, desvio de linha de base e efeito de espalhamento nos espectros, o que pode 

afetar a robustez dos modelos de calibração posteriores. Dessa forma, para que essas 

informações não encubram a informação que está verdadeiramente relacionada com a 

propriedade que se deseja estudar, uma série de ferramentas matemáticas, chamadas de pré-

processamentos espectrais, são utilizadas (SIMÕES, 2008). As ferramentas matemáticas das 

técnicas de pré-processamento espectral operam nas amostras e são aplicadas às colunas da 

matriz de dados, para cada variável. São exemplos desse conjunto de técnicas a normalização, 

correção de linha de base, suavização, derivadas, padronização pelo desvio padrão, correção 

multiplicativa de sinal (KOWALSKI; BEEBE, 1987; FERREIRA, 2015). 

Um artifício comumente utilizado para destacar e facilitar a identificação das feições de 

absorção nos espectros é a transformação dos valores de reflectância para absorbância,e com 

isso melhorar a linearidade dos espectros. Essa propriedade mede a capacidade dos materiais 

em absorver radiações eletromagnéticas em frequências específicas (HOLLAS, 2004). Para 

aumentar os picos quimicamente mais relevantes nos espectros e reduzir os efeitos, como os 

desvios da linha de base e a curvatura geral, as técnicas mais comumente utilizadas incluem 

correção de dispersão multiplicativa (MSC) (GELADI et al., 1985) e a variação normal padrão 

(SNV) (BARNES et al., 1989). Esses efeitos são provocados pela não-homogeneidade das 
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amostras, decorrentes principalmente de diferença de granulometria, causados pelo 

espalhamento de luz. 

Para reduzir o ruído aleatório nos sinais espectrais, ou seja, os sinais contínuos e sem 

relação com atributos mensuráveis, o método de suavização é comumente utilizado. Ele atua 

criando espectros médios para diminuir a relação sinal / ruído através do filtro de média móvel, 

que calcula o valor espectral de pontos considerando um intervalo definido a partir de um ponto 

médio (TSAI; PHILPOT, 1998). 

Métodos de derivadas realizam correção de linha de base e aumentam os sinais fracos, 

além de remover tanto os aditivos e efeitos multiplicativos nos espectros através derivação 

numérica de um vetor que inclui um passo de suavização. O primeiro derivado remove a linha 

de base e elimina efeitos de fundo; a segunda derivada remove a linha de base e a linear 

(SAVITZKY & GOLAY, 1964). A técnica de remoção contínua é usada para isolar 

características de absorção devidos a processos diferentes daqueles de interesse em espectros 

de refletância difusa (CLARK & ROUSH, 1984). 

Embora alguns trabalhos na literatura já propuseram ferramentas de otimização para 

pré-processamentos, a escolha do pré-processamento mais adequado para um determinado 

conjunto de dados é um processo de tentativa e erro. (DEVOS; DUPONCHEL, 2011; JARVIS; 

GOODACRE, 2005; FERREIRA, 2015). 

 

2.5.2. Regressão por Mínimos quadrados parciais (PLSR) 

 

Proposta inicialmente por H. Wold (2001), PLSR é uma técnica de análise de dados 

multivariados utilizada para relacionar uma ou mais variáveis resposta (Y) com diversas 

variáveis independentes (X), com base no uso de fatores. PLSR é especialmente empregado 

quando existem muitas variáveis preditoras altamente colineares (COZZOLINO & MORON, 

2003; VISCARRA ROSSEL et al., 2006; CONFORTI et al. 2013). 

O PLSR implica em encontrar um conjunto de vetores base (componentes principais) 

para os dados espectrais e um conjunto separado de vetores base para os dados de concentração 

e, em seguida, relacioná-los um com o outro. O primeiro componente principal corresponde 

aquele que descreve a máxima quantidade de variância das amostras. Quando toda a variância 

de um conjunto de amostras não puder ser explicada por apenas um componente principal, um 

segundo componente principal perpendicular ou ortogonal ao primeiro será utilizado, e assim 

por diante de forma que o modelo irá selecionar o menor número possível de variáveis 

independentes com o máximo de informações contidas em cada variável, e altamente 

correlacionadas umas com as outras (ADAMS, 1995). Dessa forma, após a modelagem, 

teoricamente, a matriz dos quadrados dos resíduos deverá conter apenas a variância não 

explicada associada ao ruído. 

Essa é uma das técnicas estatísticas multivariadas mais comuns para calibração e 

predição de atributos dos solos devido a facilidade na interpretação dos seus resultados 

(REEVES, MCCARTY et al., 2002; COZZOLINO; MORÓN, 2006; VISCARRA ROSSEL; 

MCBRATNEY, 2006). 
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3. MATERIAL E MÉTODOS 

 

3.1. Caracterização da Área de Estudo 

 

O estudo foi realizado no módulo experimental de produção orgânica intensiva de 

hortaliças (módulo experimental), localizado no Sistema Integrado de Produção Agroecológica 

(SIPA), conhecido como ‘Fazendinha Agroecológica - Km 47’, no município de Seropédica, 

estado do Rio de Janeiro Brasil, entre as coordenadas 22º46’S, 43º41’W (Figura 6). O SIPA 

tem por objetivo desenvolver atividades de pesquisa, ensino e extensão em agroecologia e 

agricultura orgânica, em um esforço conjunto de pesquisadores da Embrapa Agrobiologia, 

Embrapa Solos, PESAGRO-RJ e de professores e pesquisadores da Universidade Federal Rural 

do Rio de Janeiro (UFRRJ) e do Colégio Técnico da UFRRJ (CTUR) (ABBOUD et al., 2005). 

 

 
 

Figura 6. Localização do módulo experimental de produção orgânica intensiva de hortaliças. 

 

O módulo experimental, por sua vez, foi criado em 2010 com a proposta de ser um 

sistema de produção orgânica intensiva de hortaliças e tem 1,06 hectare de área total. Ele está 

localizado em relevo plano com altitude média de 33 m e clima predominante do tipo Aw, 

caracterizado como quente e úmido (KÖPPEN, 1948), com valores médios de temperatura de 

24,5º C e precipitação pluviométrica anual de 1.213 mm (DIAS, 2007). 

A organização espacial e o uso da terra das subáreas do módulo pode ser vista na Figura 

7 e é composta por área de hortaliças a pleno sol (canteiros: 3.578m²); cultivo de hortaliças 

protegidas por telados, com redução de 30% de radiação incidente (telados: 527 m²); cultura de 

capim (Pennisetum purpureum) (capineira: 3982 m²); leguminosas arbustivas (Gliricidia 

sepium) (gliricídia: 694m²) além de uma área destinada à compostagem orgânica (C.O.), bordas 

das culturas e ruas de tráfego (1842 m²) (MATA, 2012). 
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Figura 7. Organização espacial das subáreas do módulo experimental compostas por capineira, 

gliricídia, canteiros a céu aberto e telados com hortícolas e área de compostagem orgânica 

(C.O.) (Adaptado de MATA, 2012). 

 

As áreas do módulo experimental representam, em sua prática de manejo, duas regiões 

principais, com objetivos distintos. São elas: região de produção de hortaliças, com interesse 

comercial (Canteiros e Telados) e região de produção de biomassa vegetal (Capineira e 

Gliricidia), que têm suas palhadas utilizadas como cobertura morta nas culturas de hortaliças. 

Dessa forma, há importação e exportação de matéria orgânica de uma área para a outra dentro 

do próprio módulo. Segundo Ronquim (2010), essa prática proporciona, a longo prazo, uma 

melhora nas condições físicas, biológicas e químicas de solo tropicais, de forma econômica e 

ecológica e é uma das técnicas agroecológicas adotadas no SIPA. 

 

3.2. Amostragem e Caracterização do Solo 

 

O solo do módulo experimental foi classificado como Planossolo Háplico Distrófico 

arênico (DIAS, 2007) e tem sido amostrado e monitorado, anualmente, desde 2011 para que 

seja avaliada a qualidade do solo, mediante implantação de técnicas agroecológicas de manejo. 

Para garantir que a amostragem fosse feita sempre nos mesmos locais ao longo do tempo, a área 

foi identificada em um grid de, aproximadamente, 5 x 5 metros através de GPS com correção 

diferencial (GPS TRIMBLE PRO XP), exceto na área de capineira, que foi amostrada em um 

grid de 10 x 10 metros para abranger as variações e características do solo. As coletas de 

amostras de terra foram realizadas com trado tipo holandês, na profundidade de 0 a 20 cm, em 

cada um dos pontos georreferenciados, com 133 amostras destinadas à análise de C (grupo 1) 

e 294 amostras destinadas às análises de N e P (grupo 2, correspondente ao número total de 

amostras do módulo). 

As coletas foram realizadas nos meses de agosto, nos anos de 2013 e 2014. Ao longo do 

tempo, algumas amostras foram perdidas ou tiveram sua forma original danificada no processo 

de armazenamento e, por esses motivos, foram inutilizadas na elaboração deste trabalho. Na 

Figura 8 é possível observar os pontos de amostragem para do módulo experimental para os 

grupos 1 e 2 (A) e as amostras que não se perderam e então foram de fato utilizadas para o 

trabalho, sendo o total de 244 e 271 para os anos de 2013 (B) e 2014 (B), respectivamente. 
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Figura 8. Croqui dos pontos de coleta do módulo experimental georreferenciados. Todos os 

pontos (vermelhos e azuis) representam as amostras do grupo 2, coletadas em 2013 e os 

pontos em vermelho representam as amostras do grupo 1, coletadas em 2014. 

 

3.3. Análises Químicas do Solo 
 

As amostras de terra foram secas ao ar, destorroadas, passadas por peneira de malha de 

2 mm para a obtenção da terra fina seca ao ar (TFSA). Uma parte das amostras foi direcionada 

às análises químicas, que ocorreram no Laboratório de Química Agrícola na Embrapa 

Agrobiologia e no Laboratório de Matéria Orgânica do Solo, do Departamento de Solos da 

UFRRJ. Foi realizada a análise dos teores de carbono orgânico total pelo método Walkley & 

Black modificado (EMBRAPA, 2009). O teor de nitrogênio total pelo método Kjeldahl 
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(SILVA, 2009) e o teor de fósforo disponível trocável através do método de Mehlich 1, com a 

determinação do fósforo por colorimetria (MEHLICH, 1953). 

Para comparação com as reflectâncias e absorbâncias espectrais, a MOS foi estimada a 

partir do cálculo de van Bemmelen, que assume teor no solo de 58%, pela seguinte equação: 

 

MOS = C x 1,724         (1) 

3.4. Estatística Descritiva dos Dados 

 

A estatística descritiva (mínimos, máximos, 1º e 3º quartis, média, mediana, desvio 

padrão, assimetria e curtose) dos teores de C, N e P foi calculada e utilizada para resumir e 

avaliar a magnitude da dispersão do conjunto de dados. O conjunto de dados foi submetido à 

análise visual de histogramas para avaliar a normalidade dos dados. 

 

3.5. Análises Granulométricas do Solo 

 

As frações granulométricas do solo interferem nos teores de MOS e também nas feições 

de absorção e intensidade de reflectância geradas nas suas curvas espectrais. Dessa forma, uma 

parte das amostras de terra foi encaminhada ao Laboratório de Física do Solo da UFRRJ para 

determinação da granulometria através da realização do método da Pipeta (EMBRAPA, 1997). 

As quantidades de areia, argila e silte foram obtidas e utilizadas para auxiliar na interpretação 

da matéria orgânica e dos dados espectrais do solo. 

 

3.6. Análises Espectrais do Solo 

 

Uma parte das amostras de TFSA foi encaminhada para o Laboratório de Contaminantes 

e Resíduos da Embrapa Solos, onde as amostras foram homogeneizadas e colocadas em placas 

de Petri (90 mm de diâmetro) formando uma camada de aproximadamente 1 cm de espessura. 

Em seguida, as partículas foram niveladas dentro das placas, para minimizar os efeitos da 

rugosidade, e então colocadas na estufa por 12h a 45-50ºC, para eliminar o efeito da umidade. 

As leituras espectrais das amostras foram obtidas pelo equipamento FieldSpec 4 

(Malvern Panalytical B.V., Almelo, Holanda) que registra a reflectância difusa do solo na 

região Vis-NIR do espectro eletromagnético na faixa espectral de 350 a 2500 nm. As placas de 

Petri com as amostras foram colocadas sobre uma mesa giratória (ASD Turntable), girando a 

22 rotações por minuto, para que as leituras espectrais fossem feitas com a amostra em 

movimento. Foi realizada uma leitura espectral por amostra/placa que, por sua vez, foi obtida 

através da média de 100 varreduras de repetição interna feita pelo instrumento, para a aquisição 

de um espectro representativo. As leituras das amostras de terra foram feitas em conjuntos de 

dez e, antes do escaneamento de cada conjunto, foi obtida uma varredura do padrão 

Spectralon® branco (LabSphere, North Sutton, NH, EUA) com 100% de reflectância. As etapas 

do processamento das amostras e o conjunto de instrumentos utilizados para as leituras 

espectrais podem ser visualizados na Figura 9. 
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Figura 9. Da esquerda para a direita: amostras de TFSA colocadas e niveladas em placas de 

Petri; estufa; conjunto de equipamentos necessários às leituras espectrais, sendo A- 

espectrorradiômetro Field Spec 4; B- disco-mesa giratória suporte para as placas de Petri; 

C- computador acoplado ao espectrorradiômetro e D - placa de spectralon. 

 

3.7. Pré-Processamento dos Dados Espectrais do Solo 

 

Os dados de reflectância (REF) das amostras coletadas em 2014 e 2013 foram 

submetidos a seis pré-processamentos, de forma a avaliar qual a estratégia mais adequada para 

o pré-processamento dos dados, sem remover informações espectrais importantes e 

evidenciando as que têm ligação com as concentrações de C, N e P. Os pré-processamentos 

utilizados foram: suavização por média móvel simples com janela de 9 bandas (SMO), 

derivação Savitzky-Golay com polinômio de 1ª ordem e janela de 9 bandas (SGD), variação 

normal padrão (SNV), correção multiplicativa de sinal (MSC) e correção do contínuo (CRR). 

 

3.8. Modelagem Quimiométrica de C, N e P do Solo 

 

3.8.1. Particionamento dos dados 

 

O conjunto de dados referente à amostra de terra coletas em 2014 foi dividido ao acaso 

em conjunto de treinamento (~70% das amostras) e conjunto de validação (~30%; das 

amostras), por meio da função ‘sample’ do software estatístico R (R CORE TEAM, 2017), que 

faz uma seleção aleatória dos dados. Os dados de 2013 não sofreram particionamento, conforme 

pode ser observado na Tabela 2. 

 

Tabela 1. Conjunto de dados particionado em treinamento e validação para as amostras 

referentes ao ano de 2014 e conjuntos globais de dados para as amostras de 2013 e 2014. 

Atributos 
2013 2014 

Conjunto Global Conjunto Global Treinamento Validação 

Carbono 123 122 86 36 

Nitrogênio 244 271 190 81 

Fósforo 244 271 190 81 

 

Dessa forma, para o grupo 1 ficaram 122 amostras no conjunto global, 86 e 36 amostras 

nos conjuntos de treinamento e validação, respectivamente. Para as amostras do conjunto 2 

ficaram 271 amostras no conjunto global, 190 e 81 para os conjuntos de treinamento e de 

validação, respectivamente. As amostras do ano de 2013 ficaram com 123 amostras para o 

grupo 1 e 244 para o grupo 2. 
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3.8.2. Análise multivariada 

 

Foi utilizada regressão por mínimos quadrados parciais (PLSR) nos dados de 

treinamento e validação das amostras do ano de 2014 e apenas validação para os dados de 2013, 

ambos a partir de dados espectrais pré-processados (ABS, SMO, SGD, SNV, MSC e CRR), 

além dos dados de reflectância (REF) com o objetivo de alcançar o melhor ajuste entre os teores 

de C, N e P e dados espectrais Vis-NIR através de suas variáveis latentes extraídas por PLSR. 

 

3.8.3. Construção e validação dos modelos de predição PLSR 

 

Para a construção dos modelos de predição, foi realizado um treinamento do algoritmo 

a partir dos dados do conjunto de treinamento das amostras de 2014. Para a seleção do número 

de variáveis preditoras, ou componentes principais, foi utilizada a validação cruzada, através 

da técnica de leave-one-out. Nesse processo, um conjunto menor foi formado com 10 amostras, 

sendo uma delas removida para que tivesse sua concentração de C, N ou P predita a partir das 

outras nove amostras remanescentes. Esses testes (treinamentos) foram repetidos 10 vezes, cada 

vez com uma nova amostra removida e uma nova predição a partir das restantes. Para cada teste 

foi atribuído um erro quadrático médio (RMSE) em relação ao valor predito e ao, de fato, 

obtido.  O número de componentes principais responsável por apresentar o menor erro de 

predição nesse processo foi escolhido e incorporado ao modelo para então pudesse ser aplicado 

às amostras externas ao conjunto de treinamento (amostras dos conjuntos de validação). Uma 

representação de como funciona a validação cruzada por leave-one-out pode ser observada na 

Figura 10. 

 

 
 

Figura 10. Esquema mostrando o funcionamento da validação cruzada por leave-one-out. 
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Após o treinamento dos modelos, os mesmos foram aplicados às amostras referentes ao 

conjunto de validação de 2014, para verificar o quanto de fato eles refletiram os teores de C, N 

e P do solo no módulo experimental, desta vez com as amostras que não estavam presentes no 

treinamento. Foi gerado um modelo de predição para cara atributo do solo (C, N, P), 

separadamente, por pré-processamento (ABS, SMO, SGD, SNV, MSC e CRR) e para os dados 

brutos de reflectância (REF) totalizando 42 modelos treinados e validados para os dados de 

2014. 

No processo de modelagem, há uma etapa de validação onde novas amostras, do mesmo 

solo em estudo, avaliam a capacidade preditiva dos modelos, diferentes da validação cruzada e 

validação externa. Nesse caso, para avaliar a aplicabilidade dos modelos preditivos de C, N e P 

no módulo experimental, os modelos foram validados também nas amostras referentes à coleta 

de 2013 simulando uma aplicação na prática rotineira do módulo como, por exemplo, para o 

monitoramento temporal dos teores desses nutrientes no solo. 

 

3.8.4. Avaliação dos modelos de predição PLSR 

 

A avaliação da performance dos modelos de predição foi realizada de acordo com seus 

ajustes e acurácias através do cálculo dos seguintes índices: coeficiente de determinação – R² – 

equação (2); raiz do erro quadrático médio – RMSE – equação (3); e razão do desempenho e 

intervalo interquartil – RPIQ – equação (4). 
 

 

 

(2) 

 
 

 

 

(3) 

 

 

 

 

(4) 

 
 

Onde  é o valor predito;  é o valor observado;  é a média dos valores observados; 

n é o número de amostras; Q1 e Q3 correspondem aos valores referentes ao primeiro e terceiro 

quartis, respectivamente. 

 

3.8.5. Remoção de outliers 

 

O termo outlier é utilizado para designar amostras anômalas que podem estar presentes 

nos conjuntos de construção e validação de modelos. No presente trabalho, foi feita a etapa de 

treinamento e validação dos modelos a partir de dados brutos de reflectância e a partir desses 

modelos foi feita a identificação de outliers através da análise visual das amostras que estavam 

em posições muito aleatórias às demais, em relação à correlação linear entre dados preditos 

versus dados observados. Essas amostras foram retiradas dos conjuntos as quais pertenciam 

(treinamento e validação) e então novos modelos para REF foram realizados, além dos modelos 

para ABS, SMO, SGD, SNV, MSC e CRR. Um fluxograma resumido de todas as etapas 

realizadas nesse trabalho é apresentado na Figura 11. 
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Figura 11. Fluxograma das etapas realizadas incluindo as análises químicas laboratoriais, assim 

como, as espectrais e quimiométricas desenvolvidas no presente trabalho. 

 

 

  



 

20 
 

4. RESULTADOS E DISCUSSÃO 

 

4.1. Estatística Descritiva 

 

Os resultados das análises químicas dos teores de C, N e P do solo, para as mostras anos 

de 2013 e 2014, foram descritos por Mata (2016) e estão apresentados na Tabela 3, através dos 

valores médios obtidos para cada área do módulo experimental. 

 

Tabela 2. Estatística descritiva dos teores de C, N e P do solo, para os anos de 2013 e 2014. 

Observações 

2013 2014 

C (.kg-¹) N (g.kg-¹) P (mg.l-¹) C (g.kg-¹) N (g.kg-¹) P (mg.l-¹) 

123 244 244 122 271 271 

Mínimo 0,90 0,10 2,48 0,34 0,00 2,03 

Máximo 18,00 1,80 257,57 16,35 1,80 257,57 

1º Quartil 4,67 0,70 27,66 4,46 0,60 37,33 

3º Quartil 8,47 1,10 109,23 8,92 1,00 106,85 

Média 6,89 0,87 76,59 6,77 0,84 79,62 

Mediana 6,38 0,80 72,42 6,09 0,80 79,22 

DP 3,16 0,30 55,38 3,01 0,30 54,59 

Assimetria 0,74 0,32 0,78 0,59 0,22 0,80 

Curtose 0,96 -0,21 0,32 0,04 0,25 0,56 

 

Os valores de C variaram de 0,90 a 18,00 g·kg-1 em 2013 e de 0,34 a 16,35 g·kg-1 em 

2014 e apresentaram um pequeno decréscimo médio de 6,89 g·kg-1 para 6,69 g·kg-1 dos valores 

médios nesse período de tempo. Os valores de N variaram de 0,10 a 1,80 g·kg-1 em 2013 e de 

0,00 a 1,80 g·kg-1 em 2014 e também apresentaram pequeno decréscimo dos valores médios 

de 0,87 para 0,84 g·kg-1 nesse período de tempo. Para os valores de P, os valores encontrados 

variaram de 2,48 a 257,57 mg.l-1, apresentando média de 76,86 mg.l-1 em 2013. Em 2014, a 

variação de foi 2,03 a 257,5 mg.l-1, com média de 79,62 mg.l-¹, indicando uma grande variação 

desse elemento em comparação com os dados de P de 2013. 

Os valores de assimetria e curtose indicam a distribuição dos valores em torno do ponto 

central e seu achatamento, respectivamente. Esses valores podem ser observados também 

graficamente através dos histogramas apresentados na Figura 12. 
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Figura 12. Histogramas para os dados de C, N e P do solo das amostras dos anos de 2013 e 

2014, respectivamente da esquerda para a direita. 

 

4.2. Dados Granulométricos 

 

Para uma interpretação mais abrangente sobre o comportamento da fração orgânica do 

solo, representada neste estudo por C, N e P, foram utilizados os dados granulométricos do 

módulo experimental, obtidos por Mata (2012) e apresentados na Tabela 4. 

 

Tabela 3. Frações granulométricas do solo referentes a cada área (capineira, gliricidia, 

canteiros e telados) do módulo experimental. 

Sub-Área 
Areia grossa 

(g.kg-¹) 

Areia fina 

(g.kg-¹) 

Areia total 

(g.kg-¹) 

Argila 

(g.kg-¹) 

Silte 

(g.kg-¹) 

Capineira 681,9 177,8 859,7 97,6 42,7 

Gliricídia 674,5 207,1 881,6 36,5 81,8 

Canteiros 610,7 223,1 833,8 86,3 79,8 

Telados 564,3 210,6 774,9 127,4 97,7 

 

A fração areia grossa predomina em todas as áreas do módulo experimental seguida da 

fração de areia fina. As áreas da capineira, canteiros e telados apresentaram teores maiores de 

argila quando em comparação aos teores de silte. Os valores encontrados foram de 9,76 g.kg-¹, 

8,63 g.kg-¹ e 12,74 g.kg-¹ de argila e 4,27 g.kg-¹, 7,98 g.kg-¹ e 7,54 g.kg-¹ de silte para Capineira 

e Telados, respectivamente. Por outro lado, a área da Gliricícia apresentou maior concentração 

de silte que de argila com valores de 3,65 g.kg-¹ e 8,18 g.kg-¹ para argila e silte, 

respectivamente. 
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Quando esses dados são trabalhados de forma a representar a área do módulo como um 

todo (Figura 13), é possível observar que a fração de areia total é extremamente alta (84 g.kg-

¹) e não proporciona o surgimento de mecanismos para que a matéria orgânica das culturas 

vegetais fique ali retida e preservada. Logo, em solos como esse, de textura arenosa, a matéria 

orgânica lábil, ou seja, a mais facilmente decomponível, tem maior importância na dinâmica da 

MOS nesses sistemas (FELLER, 1997). 

 

 
 

Figura 13. Frações totais de areia, argila e silte do solo do módulo de produção de hortaliças. 

 

4.3. Dados Espectrais 

 

As amostras de solo foram lidas nas porções vis-NIR do espectro eletromagnético (350 

a 2500 nm). As curvas espectrais médias obtidas para os anos de 2013 e 2014, para cada área 

do módulo estão apresentadas na Figura 14, comparadas graficamente na Figura 15 e descritas 

na Tabela 5. Além disso, o comportamento espectral do solo foi analisado qualitativamente 

graças à influência composição mineralógica, teor de umidade, teor de matéria orgânica e 

granulometria no comportamento espectral dos solos (STONER; BAUMGARDNER, 1981; 

BEN-DOR et al. 1997; DEMATTÊ, 2002). 
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Figura 14. Comportamento espectral total e médio (Med), com ± desvio padrão (DP), para o 

módulo como um todo (B, H) e para cada área do módulo experimental sendo elas: 

Capineira (C, I); Gliricídia (D, J); Canteiros (E, L) e Telados (F, M) para os anos de 2013 

e 2014. 
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Figura 15. Comportamento espectral médio dos solos para cada área do módulo experimental 

para os anos de 2013 (A), 2014 (B) e as médias espectrais do módulo como um todo para 

as amostras referentes aos dois anos. 

 

As amostras de todas as áreas do módulo experimental apresentaram assinaturas 

espectrais semelhantes para os anos de 2013 e 2014, com picos de absorção nas mesmas regiões 

(1400, 1900, 2200 nm). Os picos de absorção nos comprimentos de onda próximos de 1.400 

nm representam o primeiro sobretom de estiramento das ligações O-H, associadas às moléculas 

de água ou metal hidratado (VISCARRA ROSSEL & CHEN, 2011). Da mesma forma, a 

absorção no comprimento de onda 1.900 nm está relacionada à combinação de estiramentos e 

flexões das ligações O-H, presentes na molécula H2O (CLARK et al., 1990).  Também 

apareceram bandas de absorção referentes à presença de argilominerais (GROVE et al, 1992); 

caulinita (2200 nm), e óxido de ferro, que é indicado por uma concavidade presente entre 850 

a 900 nm (EPIPHANIO, 1992). Os picos de absorção entre 1.350-1.450 e entre 1.850-2.030 nm 

podem estar relacionados a pequenas diferenças de umidade das amostras, mesmo após a 

secagem em estufa, na etapa de preparação. Em relação aos grupamentos ligados à fração da 

MOS, pôde-se observar a formação de feições referentes a presença de C-H, O-H, N-H (1390 

nm), C-O, C-N, O-H, N-H, S-H (1900 nm), C-H, N-H (2200 nm) e C-O, O-H, S-H (2350 nm) 

(STEVENS, 2008). 

Mais especificamente no caso da textura do solo, a influência no vis-NIR ocorre quanto 

à intensidade da reflectância ao longo de toda a assinatura espectral (albedo), uma vez que solos 

com maior teor de argila tendem a apresentar maior agregação das partículas que os compõem, 

o que por sua vez ocasiona menor reflecção da energia eletromagnética incidente 

(BAUMGARDNER et al., 1985; BELLINASO et al., 2010). 
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Tabela 4. Reflectância média (REF) ± 1 desvio padrão (DP) e matéria orgânica do solo 

(MOS) para as subáreas do módulo experimental. 

Área do módulo 
REF REF + DP REF - DP MOS (g.kg-1) 

2013 

Capineira 0,29 0,33 0,26 10,42 

Gliricídia 0,30 0,33 0,28 10,08 

Canteiros 0,28 0,30 0,26 13,77 

Telados 0,27 0,29 0,25 15,28 

 2014 

Capineira 0,28 0,32 0,25 9,38 

Gliricídia 0,30 0,31 0,28 8,84 

Canteiros 0,28 0,31 0,26 13,74 

Telados 0,25 0,27 0,23 15,22 

REF – reflectância; DP – desvio padrão; MOS – matéria orgânica do solo. 

 

De todas as áreas do módulo experimental, os telados apresentaram menor reflectância 

média em 2013 e 2014, respectivamente (0,27 e 0,25nm), maior conteúdo de MOS (15,28 e 

15,22 g.kg), o maior teor de argila do módulo (12,74%) e morfologia mais horizontalizada das 

curvas espectrais. Todos esses aspectos confirmam o que foi dito por Demattê (2012), que 

quanto menor a reflectância espectral, maior o conteúdo de MOS e de argila da amostra de solo. 

Da mesma forma, porém no sentido inverso, a área de gliricídia apresentou a menor 

concentração de argila (3,64%), o menor teor de MOS (10,08 g.kg) e a curva espectral média 

mais ascendente, quando comparada às demais. Características medianas foram encontradas 

nas áreas de capineira e canteiros com teores de MOS de 10,42 e 13,77 g.kg para o ano 2013 e 

9,38 e 13,74 para o ano de 2014 e reflectância média de 0,28 e 0,29nm para o ano de 2013 e 

0,28 para ambas as áreas no ano de 2014. 

Para ambos os anos analisados, os telados apresentaram maiores valores médios de 

reflectância enquanto que a gliricídia apresentou os menores. A capineira e os canteiros 

apresentaram valores equivalentes. 

Como o estudo foi feito com amostras do mesmo solo, descartam-se as influências da 

textura, mineralogia e conteúdo de óxidos sobre as variações entre as curvas espectrais. Logo, 

essas variações foram atribuídas às diferenças de manejo entre as áreas do módulo, que podem 

ser relacionadas aos teores de MOS. A MOS, por sua vez, absorve maior radiação 

eletromagnética, atenuando a intensidade de reflectância dos solos (DALMOLIN et al., 2005). 

Pinheiro (2017) e Genu (2010) encontraram feições espectrais nas curvas de solos 

arenosos e tropicais, na Amazônia e em São Paulo, semelhantes com as obtidas no presente 

trabalho. Esses solos foram classificados como neossolo quartzarênico e argissolo vermelho-

amarelo distrófico arênico, que também tem grande porção de areia em superfície. 

 

4.4. Pré-Processamento dos Dados Espectrais 

 

Os dados espectrais (Vis-NIR) foram pré-processados com objetivo de melhorar a 

acurácia dos modelos de regressão. As curvas espectrais médias dos dados brutos de 

reflectância (REF) e pré-processados matematicamente para dados de absorbância (ABS), 

suavização (SMO), Derivadas Savitzky-Golay (SGD), Variação Normal Padrão (SNV), 

Correção Multiplicativa de Sinal (MSC) e Correção do Contínuo (CRR) estão apresentados na 

Figura 16. 
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Figura 16. Curvas espectrais médias de REF espectral e após a adição dos pré-processamentos 

espectrais de ABS, SMO, SGD, SNV, MSC, CRR. 

 

4.5. Modelagem 

 

4.5.1. Identificação de outliers 

 

Os outliers são os dados que apresentam comportamento anômalo em relação aos 

demais da série, de forma que podem prejudicar a interpretação de resultados obtidos por 

algoritmos e análises de dados, como é o caso das análises multivariadas. Para esse estudo, as 

amostras foram identificadas como outliers a partir de um primeiro teste de modelagem PLSR, 

pela técnica de leave-one-out, com os dados brutos de reflectância vis-NIR e as concentrações 

de C, N e P das amostras de terra de 2014 do módulo. A partir de então, os dados mais afastados 

à correlação linear gerada foram retirados dos conjuntos de dados de treinamento e validação, 

conforme pode ser visto em vermelho na Figura 17. Esses novos conjuntos (sem outliers) foram 
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submetidos a todas as etapas posteriores de pré-processamentos espectrais e modelagem a partir 

de treinamento e validações. 

 

 
 

Figura 17. Amostras identificadas como outliers em vermelho para o conjunto de dados de 

treinamento (trei) e validação (val) para C e somente validação (val) para N e P. 

 

Para os modelos teste de predição de C, foram considerados outliers 4 amostras do 

conjunto de treinamento e 3 do conjunto de validação, o que corresponde a 4,1% do número 

total de amostras. Para o modelo de N, apenas uma amostra do conjunto de validação foi 

considerada outlier, o que representa 0,37% das amostras totais enquanto que para o modelo de 

P, duas amostras do conjunto de validação foram consideradas outliers, representando 0,47 das 

amostras totais. 

 

4.5.2. Treinamento e validação dos modelos de predição de C 

 

O treinamento dos modelos de predição de C e o número de componentes PLS capazes 

de prever concentrações químicas das amostras a partir de dados espectrais com o menor RMSE 

atribuído variou de 3 a 12 e podem ser observados graficamente em vermelho na Figura 18 e 

descrito na Tabela 6. 
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Figura 18. Gráficos de componentes PLS e RMSE para os treinamentos dos modelos preditivos 

de C. 

 

Após o treinamento dos modelos, foi gerado gráfico de regressão linear representando 

a diferença entre as concentrações de C observadas e preditas pelo modelo, onde o modelo ideal 

teria todos os pontos sobre a reta. Os gráficos para os modelos de teste para dados de REF e 

pré-processados (ABS, SMO, SGD, SNV, MSC, CRR) estão na Figura 19 e dados na Tabela 6. 
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Figura 19. Treinamento dos modelos de predição de C a partir de dados de REF, ABS, SMO, 

SGD, SNV, MSC e CRR. 
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O R² é uma medida que descreve a quantidade de variabilidade nos dados que é 

explicada pelo modelo de regressão ajustado. Dessa forma, quanto maior o valor de R² obtido, 

melhor o modelo nesse aspecto. Os valores de R² para os treinamentos dos modelos preditivos 

de C variaram de 0,78 a 0,89; o que indica que todos os modelos tiveram ajustes de bons a 

muito bons. Comparando com os valores obtidos para o modelo com os dados de REF (sem 

pré-processamento), alguns algoritmos retiraram dados importantes para o ajuste, 

principalmente os que corrigiram a linearidade (ABS R²= 0,80) e o espalhamento da luz (SNV 

e MSC, ambos R²= 0,78). Por outro lado, o modelo SMO apresentou melhor R² (0,89), 

indicando que as amostras sofreram interferências aleatórias, o que provocou ruídos e 

consequentemente um ajuste prejudicado. Quando o SMO foi aplicado aos dados, houve um 

aumento do ajuste dos modelos de predição de 0,08%. 

O RMSE representa a qualidade do ajuste de um modelo e indica o quanto as respostas 

variam em torno das suas predições. Dessa forma, quanto mais o RMSE for próximo de zero, 

melhor a qualidade do ajuste. Os valores de RMSE para os treinamentos dos modelos de 

predição de C variaram de 0,92 (SMO) a 1,31 (SNV e MSC). 

O RPIQ representa o desempenho dos modelos de previsão, através do espalhamento 

entre os quartis 1 e 3. Os valores de RPIQ para os treinamentos dos modelos de predição de C 

variaram de 4,95 a 3,48 para SMO e MSC, respectivamente. 

Após o treinamento dos modelos, para saber se eles são capazes de predizer o c em 

amostras externas, ou seja, que não participaram do processo de treinamento, os modelos 

obtidos a partir dos dados de REF e de todos os pré-tratamentos (ABS, SMO, SGD, SNV, SMO 

e CRR) foram usados utilizados nos dados do conjunto de validação de 2014 (validação 1) e 

em seguida para o conjunto global de dados referentes às amostras de 2013 (validação 2).  A 

validação 2 foi realizada com o objetivo de testar uma segunda avaliação desses modelos 

quimiométricos para monitorar o C do solo do módulo, de forma prática.  Esses dados podem 

ser encontrados na Figura 20 e na Tabela 7. 

Para a validação 1, os valores de R² variaram de 0,65 a 0,72; sendo o menor valor obtido 

para os modelos SMO e MSC e o maior para o modelo SGD. Para RMSE houve variação de 

Tabela 5. Parâmetros estatísticos obtidos a partir do treinamento e validação dos modelos 

preditivos de C, bem como o número de componentes PLS escolhido para modelo. 

 Treinamento - C 

PP R² RMSE RPIQ NC 

REF 0.81 1,23 3,71 5 

ABS 0,80 1,24 3,69 5 

SMO 0,89 0,92 4,95 12 

SGD 0,88 0,97 4,71 4 

SNV 0,78 1,31 3,49 3 

MSC 0,78 1,31 3,48 3 

CRR 0,83 1,15 3,98 7 

REF: reflectância; ABS: absorbância; SMO: suavização; SGD: derivadas Savitzky-Golay; SNV: derivação 

normal padrão; MSC: correção multiplicativa de sinal; CRR: remoção do contínuo; R²: coeficiente de 

determinação; RMSE: raiz quadrada do erro médio; RPIQ: relação de desempenho para distâncias 

interquartis; NC: número de componentes PLS. 
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1,57 a 1,98, para os modelos REF e CRR, respectivamente. E para os valores de RPIQ, houve 

variação entre 3,48 e 4,95; para os modelos MSC e SMO. Esses dados indicam que os modelos 

para validação 1 apresentaram ajustes razoavelmente bons de bons. 

Para a validação 2, os valores de R² variaram de 0,35 a 0,43; sendo o menor valor obtido 

para os modelos SMO e o maior para os modelos SNV e MSC. Para RMSE houve variação de 

2,41 a 2,77, para os modelos SNV e SMO, respectivamente. Para os valores de RPIQ, houve 

variação entre 1,37 e 1,58; para os modelos SMO e SNV. Esses modelos apresentaram baixo 

potencial preditivo. Isso pode ter acontecido devido a uma transição no manejo do módulo que 

ocorreu nesse ano, variando as entradas e saídas de C em comparação com o ano de 2014. 

O modelo que obteve a melhor performance foi o SNV, que corrige os efeitos negativos 

provocados pela não-homogeneidade das amostras. Isso pode ter acontecido por se trataram de 

amostras coletadas em outro período de tempo das demais utilizadas para treinamento e 

validação 1. Com o tempo em armazenamento, é possível que as amostras tenham ficado não 

homogêneas em relação à granulometria, com migração das partículas finas para o fundo. 

Assim, durante a aquisição de dados espectrais pode ter havido espalhamento da luz. 
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Figura 20. Validação dos modelos preditivos de C para os dados de REF, ABS, SMO, SGD, SNV, MSC e CRR, para os anos de 2013 e 2014. 
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Tabela 6. Validações dos modelos preditivos de C para os dados de REF, ABS, SMO, 

SGD, SNV, MSC, CRR para os anos de 2014 e 2013. 

C - Validação 1 – 2014 

PP R² RMSE RPIQ 

REF 0,71 1,57 3,71 

ABS 0,70 1,64 3,69 

SMO 0,65 1,79 4,95 

SGD 0,72 1,70 4,71 

SNV 0,66 1,74 3,49 

MCS 0,65 1,76 3,48 

CRR 0,69 1,98 3,98 

C - Validação 2 – 2013 

PP R² RMSE RPIQ 

REF 0,41 2,49 1,53 

ABS 0,39 2,51 1,51 

SMO 0,35 2,77 1,37 

SGD 0,37 2,59 1,47 

SNV 0,43 2,41 1,58 

MSC 0,43 2,42 1,57 

CRR 0,39 2,52 1,52 

REF: reflectância; ABS: absorbância; SMO: suavização; SGD: derivadas Savitzky-Golay; SNV: derivação 

normal padrão; MSC: correção multiplicativa de sinal; CRR: remoção do contínuo; R²: coeficiente de 

determinação; RMSE: raiz quadrada do erro médio; RPIQ: relação de desempenho para distâncias 

interquartis; NC: número de componentes PLS. 

 

Comparando o modelo REF com os melhores modelos para cada parâmetro estatístico 

avaliado em ambas as validações, os valores de R², o RMSE e o RPIQ apresentaram pouca 

diferença entre eles. Dessa forma, em uma análise corriqueira de rotina, ou até qualitativa, para 

avaliação do aumento ou decréscimo de C entre as áreas de importação e exportação do módulo, 

a modelagem poderia ser realizada apenas a partir dos modelos dos dados brutos de REF, sem 

adição de ferramentas de pré-processamento espectral. 

 

4.5.3. Treinamento e validação dos modelos de predição de N 

 

O treinamento dos modelos de predição de N e o número de componentes PLS capazes de 

prever concentrações químicas das amostras a partir de dados espectrais com o menor RMSE 

atribuído variou de 5 a 20 e podem ser observados graficamente na Figura 21. 
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Figura 21. Gráficos de componentes PLS e RMSE para os treinamentos dos modelos preditivos 

de N. 

 

Em seguida, foram criados os modelos de teste para os dados brutos de reflectância 

(REF) e os pré-processados espectralmente (ABS, SMO, SGD, SNV, MSC, CRR), 

apresentados na Figura 22 e descrito na Tabela 8. 
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Figura 22. Treinamento dos modelos de predição de N a partir de dados de REF, ABS, SMO, 

SGD, SNV, MSC e CRR. 
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Os valores de R² para os treinamentos dos modelos preditivos de N variaram de 0,73 

(CRR) a 0,99 (SGD, SNV e MSC); o que indica que todos os modelos tiveram ajustes de bons 

a excelentes. Os valores de RMSE variaram de 0,03 (SGD, SNV e MSC) a 0,15 (CRR). Os 

valores de RPIQ variaram de 1,99 (CRR) a 9,99 (MSC). 

Embora não seja regra, nutrientes como N, Ca e Mg, os quais apresentam fontes 

minerais com atividade espectral na região vis-NIR costumam apresentar determinações mais 

assertivas (BEN-DOR et al 1997). 

Para a validação 1, os valores de R² variaram de 0,65 a 0,81 para os modelos de SGD e 

REF, respectivamente. Os valores de RMSE variaram de 0,13 (REF e SMO) a 0,18 (SGD) 

enquanto que o RPIQ variou de 2,39 (SGD) a 3,34 (REF). 

Para a validação 2, os valores de R² variaram de 0,43 (CRR) a 0,61 (SMO); os valores 

de RMSE variaram de 0,20 (ABS e SMO) a 0,23 (CRR) enquanto que o RPIQ variou de 1,70 

(CRR) a 4,95 (ABS). 

 

 

Tabela 7. Parâmetros estatísticos obtidos a partir do treinamento e validação dos modelos 

preditivos, bem como o número de componentes PLS escolhido e utilizado para a 

predição de C, N e P do solo. 

Treinamento – N 

PP R² RMSE RPIQ NC 

REF 0,80 0,13 2,26 9 

ABS 0,88 0,10 2,89 13 

SMO 0,81 0,13 2,28 13 

SGD 0,99 0,03 8,68 13 

SNV 0,99 0,03 9,34 19 

MSC 0,99 0,03 9,99 19 

CRR 0,73 0,15 1,99 5 

REF: Reflectância; ABS: Absorbância; SMO: Suavização; SGD: Derivadas Savitzky-Golay; SNV: 

Derivação normal padrão; MSC: Correção multiplicativa de sinal; R²: Coeficiente de determinação; RMSE: 

Raiz quadrada do erro médio; RPIQ: Relação de desempenho para distâncias interquartis; NC: número de 

componentes PLSR. 
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Figura 23. Validações dos modelos preditivos de N para os dados de REF, ABS, SMO, SGD, SNV, MSC, CRR para os anos de 2013 e 2014. 
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Tabela 9. Validações dos modelos preditivos de N para os dados de REF, ABS, SMO, 

SGD, SNV, MSC, CRR para os anos de 2014 e 2013. 

N - Validação – 2014 

PP R² RMSE RPIQ 

REF 0,81 0,13 3,34 

ABS 0,77 0,14 3,01 

SMO 0,80 0,13 3,28 

SGD 0,65 0,18 2,39 

SNV 0,75 0,15 2,92 

MCS 0,75 0,15 2,84 

CRR 0,71 0,16 2,70 

N - Validação – 2013 

PP R² RMSE RPIQ 

REF 0,56 0,22 1,85 

ABS 0,58 0,20 1,98 

SMO 0,61 0,20 1,95 

SGD 0,56 0,21 1,93 

SNV 0,53 0,22 1,82 

MSC 0,59 0,21 1,95 

CRR 0,43 0,23 1,70 

REF: Reflectância; ABS: Absorbância; SMO: Suavização; SGD: Derivadas Savitzky-Golay; SNV: 

Derivação normal padrão; MSC: Correção multiplicativa de sinal; R²: Coeficiente de determinação; RMSE: 

Raiz quadrada do erro médio; RPIQ: Relação de desempenho para distâncias interquartis. 

 

4.5.4. Treinamento e validação dos modelos de predição de P 

 

O treinamento dos modelos de predição de P e o número de componentes PLS capazes 

de prever concentrações químicas das amostras a partir de dados espectrais com o menor RMSE 

atribuído, variou de 5 a 19 e podem ser observados graficamente em vermelho na Figura 24 e 

descritos, junto com os modelos na Tabela 10. 
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Figura 24. Gráficos de componentes PLS e RMSE para os treinamentos dos modelos preditivos 

de P. 
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Figura 25. Treinamento dos modelos de predição de P a partir de dados de REF, ABS, SMO, 

SGD, SNV, MSC e CRR. 
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Para os treinamentos dos modelos de predição de P os valores de R² apresentaram 

variação de 0,59 (ABS) a 0,99 (SNV), o que indica que o ajuste dos modelos também variou 

entre razoavelmente bons a excelentes. Os valores de RMSE variaram de 5,93 (SNV) a 34,35 

(ABS). Os valores de RPIQ variaram de 1,76 (CRR) a 10,00 (MSC). 

Apesar de nutrientes como o P apresntarem pouca atividade direta nos espectros de solo, 

os bons modelos de predição gerados através da sua correlação com outros parâmetros do solo 

(IZNAGA et al. 2014). Como grande parte de absorbância desse solo provavelmente se deu 

graças a presença de MOS, essa correlação ficou mais evidente, em contraste com outros 

estudos que obtiveram ajustes de modelos de predição sem qualidade. 

Para a validação 1, os valores de R² variaram de 0,50 a 0,60 para os modelos de ABS e 

SMO, respectivamente. Os valores de RMSE variaram de 32,21 (MSC) a 36,96 (ABS), 

enquanto o RPIQ variou de 2,33 (ABS) a 2,45 (MSC). 

Para a validação 2, os valores de R² variaram de 0,43 (SGD) a 0,56 (SNV); os valores 

de RMSE variaram de 37,15 (SNV) a 55,02 (MSC) enquanto que o RPIQ variou de 1,48 (MSC) 

a 2,20 (SNV). 

 

 

 

Tabela 10. Parâmetros estatísticos obtidos a partir do treinamento e validação dos 

modelos de predição das concentrações de P do solo. 

Treinamento – P 

PP R² RMSE RPIQ NC 

REF 0,95 12,37 4,90 17 

ABS 0,59 34,35 1,76 10 

SMO 0,62 33,04 1,83 13 

SGD 0,70 29,71 2,04 5 

SNV 0,99 5,93 10,00 20 

MSC 0,98 6,81 8,89 19 

CRR 0,61 33,63 1,80 9 

REF: Reflectância; ABS: Absorbância; SMO: Suavização; SGD: Derivadas Savitzky-Golay; SNV: 

Derivação normal padrão; MSC: Correção multiplicativa de sinal; CRR: correção do contínuo; R²: 

Coeficiente de determinação; RMSE: Raiz quadrada do erro médio; RPIQ: Relação de desempenho para 

distâncias interquartis; NC: número de componentes PLSR. 
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Figura 26. Validações dos modelos preditivos de C para os dados de REF, ABS, SMO, SGD, SNV, MSC, CRR para os anos de 2013 e 2014. 
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Tabela 11. Validações dos modelos preditivos de P para os dados de REF, ABS, SMO, 

SGD, SNV, MSC, CRR para os anos de 2014 e 2013. 

P - Validação – 2014 

PP R² RMSE RPIQ 

REF 0,53 35,84 2,40 

ABS 0,50 36,96 2,33 

SMO 0,60 32,93 2,62 

SGD 0,51 36,08 2,39 

SNV 0,57 34,06 2,53 

MCS 0,54 32,21 2,45 

CRR 0,56 35,49 2,43 

P - Validação – 2013 

PP R² RMSE RPIQ 

REF 0,52 39,29 2,08 

ABS 0,47 40,22 2,03 

SMO 0,49 40,55 2,01 

SGD 0,43 41,60 1,96 

SNV 0,56 37,12 2,20 

MSC 0,53 55,02 1,48 

CRR 0,50 39,12 2,08 

REF: reflectância; ABS: absorbância; SMO: suavização; SGD: derivadas Savitzky-Golay; SNV: derivação 

normal padrão; MSC: correção multiplicativa de sinal; CRR: correção do contínuo; R²: Coeficiente de 

determinação; RMSE: Raiz quadrada do erro médio; RPIQ: Relação de desempenho para distâncias 

interquartis. 
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5. CONCLUSÕES 

 

As técnicas de espectroscopia de reflectância na região do visível e infravermelho 

próximo (vis-NIR) se mostraram eficazes para a análise qualitativa e para a predição das 

concentrações de C, N e P num Planossolo Háplico, situado em Seropédica (RJ). Apenas 

utilizando os dados espectrais de reflectância (REF) pode-se fazer o monitoramento do módulo 

de produção orgânica de hortaliças, de uma forma rápida e acurada de avaliação das áreas de 

importação e exportação de matéria orgânica do solo e, consequente tomada de decisão em 

relação ao manejo a ser implantado ou modificado. Os pré-processamentos que melhor 

otimizaram as predições de C, N e P no Planossolo Háplico, que possui elevado conteúdo de 

areia, são os que eliminam o espalhamento da luz (MSC e SNV). Isso se deve, provavelmente, 

à alta reflectância do quartzo, presente na fração areia desse solo.  

 

Finalizando, através desse estudo ficou claro também que nem todas as amostras de terra 

coletadas para a predição dos atributos avaliados são necessárias para se obter uma boa 

acurácia, já que parte das amostras foi perdida e ainda assim os modelos apresentaram bom 

ajuste na predição dos teores de C, N e P no Planossolo Háplico. 
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