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RESUMO

LAZARO, Marcela Lopes. Predicdo de carbono, nitrogénio e fosforo no solo por
espectroscopia de reflectancia vis-NIR. 2020. 52p. Dissertacdo (Mestrado em Agronomia,
Ciéncia do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural
do Rio de Janeiro, Seropédica, RJ, 2018.

A espectroscopia de reflectancia na regido do visivel e infravermelho préximo (vis-NIR) vem
sendo utilizada como método para predicdo de atributos do solo, sejam eles quimicos, fisicos,
biolégicos ou mineraldgicos, apresentando resultados rdpidos, sem gerar residuos e ndo
destrutivos quando comparados aos métodos convencionais de anélise. O objetivo geral deste
trabalho foi avaliar a acuréacia da espectroscopia vis-NIR, aliada ou nédo a diferentes técnicas de
pré-processamentos espectrais, na predi¢cdo dos teores de C, N e P do solo. Este trabalho foi
realizado em amostras de terra de um Planossolo Haplico, sob producdo organica intensiva de
hortalicas, no Sistema Integrado de Producdo Agroecoldgica (SIPA), no municipio de
Seropédica (RJ). Foram coletadas 294 amostras de terra, georreferenciadas num grid de 5x5m,
na profundidade de 0-20 cm para a leitura espectral no espectrorradiébmetro Field Spec 4. Os
espectros, referentes a cada uma das amostras, foram gerados, exportados e analisados
guantitativamente através de regressdo por minimos quadrados parciais (PLS), treinados por
validacdo cruzada, validados com dados externos. Paralelamente, com a finalidade de melhorar
as predicOes, foram testados seis pré-processamentos: absorbancia, suavizagdo, derivadas por
Savitzky-Golay, variagdo normal padréo, corre¢cdo multiplicativa do sinal e correcdo do
continuo. Os modelos de predicdo para C, N e P apresentaram valores médios de R2 de, 0,82;
0,88 e 0,78; RMSE médios de 1,16 g kg-t; 0,09 g kg-1; 22,26 mg g-t e RPIQ médios de 4,00;
5,34 e 4,46, respectivamente. Os resultados mostraram gue a espectroscopia de reflectancia vis-
NIR é uma técnica que possui acuracia, sendo promissora para predicdao de C, N e P do solo
inclusive sem a necessidade do uso de pré-processamentos espectrais.

Palavras-chave: Sensoriamento proximo. Agricultura organica. Matéria organica.



ABSTRACT

LAZARO, Marcela Lopes. Prediction of soil carbon, nitrogen and phosphorus by vis-NIR
spectroscopy. 2020. 52p. Dissertation (Master in Agronomy, Soil Science) Instituto de
Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2018.

Visible and Near infrared (vis-NIR) reflectance spectroscopy has been used as a method to
predict chemical, physical, biological or mineralogical soil attributes with fast and non-
destructive results comparing to conventional methods of analysis in Brazil. The aim of this
work was to evaluate and determine the accuracy of vis-NIR spectroscopy with and without
spectral pre-processing techniques, to predict of C, N and P soil contents. This work was carried
out in the SIPA (Integrated System of Agroecological Production) in Seropédica — RJ, Brazil.
A total of 294 soil samples were collect at 20 cm depth for chemical characterization of C, N
and P and spectral readings, that were made on the Field Spec 4 spectroradiometer. The spectra
for each sample were generated and quantitatively analysed by Partial Least Square regression,
trained by cross validation and the best models were select and then applied to new soil samples
in SIPA (external data). In parallel, six spectral pre-processes were tested to improve
predictions: absorbance, smoothing, Savitzky-Goay derivatives, standard normal variation,
multiplicative correction of the signal and continuum removal. The prediction models for C, N
and P presented mean values of R? of 0.82; 0.88 and 0.78; mean RMSE of 1.16 g kg-*; 0.09 g
kg-1; 22.26 mg g-! and RPIQ of 4.00; 5.34 and 4.46 for C, N and P, respectively. The results
suggest that vis-NIR reflectance spectroscopy is a promising technique for the prediction of soil
C, N and P and without the need for spectral pre-processing.

Keywords: Proximal sensing. Organic agriculture. Organic matter.
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1. INTRODUCAO

O solo tem grande influéncia sobre a produtividade agricola nutrindo e fomentando toda
a vida existente no planeta (AL e MOLDENHAUER, 1987; SPARKS, 1988). O Brasil, por
suas caracteristicas climéticas e ambientais, apresenta solos favoraveis a agricultura, com pouco
mais de 7,5% do seu territdrio, o que corresponde a, aproximadamente, 64.000.000 ha,
destinados a esse fim (EMBRAPA TERRITORIAL, 2016; NASA, 2017). E sabido, no entanto,
que a agricultura sob o cultivo convencional é uma das grandes responsaveis pela degradacao
das propriedades quimicas e fisicas do solo. Em contrapartida, h& um aumento no estudo de
sistemas de manejo que sejam capazes de balancear as necessidades do solo e das culturas além
de focar na sustentabilidade dos recursos naturais e na produtividade das culturas a longo prazo
(LAL & PIERCE, 1991).

Nesse contexto, técnicas agroecoldgicas de manejo vém ganhando espaco por partirem
de um movimento social que implica na gestao da agricultura a partir de um modelo sustentavel,
no qual ndo se utiliza substancias sintéticas e haja o respeito pelo meio ambiente e pelos ciclos
naturais, com énfase nas complexas relacdes existentes entre pessoas, cultivos, solo e a agua,
ao invés da maximizacgdo da producdo de uma atividade em especial (VEIGA, 2003; ASSIS,
2006). Com base nesses principios, em 1993 foi criado o Sistema Integrado de Producao
Agroecoldgica (SIPA), em uma parceria da Embrapa Solos, Embrapa Agroecologia, Pesagro-
RJ, Universidade Federal Rural do Rio de Janeiro (UFRRJ) e Colégio Técnico da UFRRJ, para
0 desenvolvimento e incentivo do estudo, pesquisa e extensdo em agroecologia e agricultura
organica. Dentro do SIPA, sob um Planossolo, foi instalado um modulo de producgéo orgéanica
intensiva de hortalicas, como prot6tipo de uma producdo em escala real visando estreitar 0s
estudos em agroecologia de forma integrada com o produtor organico, desde o cultivo até a
venda dos produtos. Também é objetivo do mddulo gerar conhecimentos que contribuam para
a sustentabilidade dos sistemas agroecoldgicos e, entre outros aspectos, para o entendimento da
dindmica da matéria organica do solo (MOS) através do monitoramento de nutrientes utilizando
fontes de base vegetal (MATA, 2012).

A MOS é um atributo chave para avaliacdo da qualidade do solo devido a sua capacidade
de influenciar suas propriedades quimicas, fisicas e bioldgicas e, com isso, ser sensivel as
modificacOes de uso e manejo. Adicionada ao solo, a matéria organica proporciona a entrada
de carbono (C) e nutrientes como fésforo (P), potassio (K), enxofre (S), célcio (Ca), magnésio
(Mg) e, principalmente, nitrogénio (N), que ndo provém da fracdo inorganica do solo. A
quantificacdo da MOS e dos teores de nutrientes no solo € feita, convencionalmente, através de
analises quimicas laboratoriais de forma lenta e onerosa, gerando residuos téxicos provenientes
de reagentes quimicos (SOUSA JUNIOR et al, 2011).

Nas Ultimas décadas, o uso de técnicas de sensoriamento proximo vem ganhando
destaque na analise do solo, especialmente as técnicas espectroscopicas aliadas as analises
quimiomeétricas para a quantificacdo da MOS e de outros atributos do solo. Para o estudo
envolvendo MOS, grande parte dos trabalhos cientificos envolvem as faixas espectrais do
visivel (vis) e do infravermelho proximo (NIR) do espectro eletromagnético, localizadas entre
350-750 nm e 750-2500 nm, respectivamente (COZZOLINO & MORON; VISCARRA
ROSSEL et. al., 2006). Nessas faixas do espectro sdo observadas relacGes da interacdo da
energia eletromagnética incidida e refletida na amostra de solo com sua mineralogia, umidade,
granulometria e material organico. Essa interacdo é detectada por sensores e apresentada em
diferentes comprimentos de onda, que podem ser processados, avaliados qualitativamente,
comparados e submetidos a analises quimiométricas, ou seja, analisados quantitativamente.
Todo esse processo ocorre de forma rapida, ambientalmente segura, econdmica e nao destrutiva
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a amostra (ARAUJO; DEMATTE; BELLINASO, 2013). Além disso, esta sendo desenvolvido
equipamentos vis-NIR portateis com a possibilidade de analise no campo, sem a necessidade
de coleta e transporte de amostras de terra para o laboratorio, tornando o processo menos
oneroso. Dessa forma, hé a possibilidade e o interesse em utilizar a espectroscopia vis-NIR
como ferramenta para a determinacdo da MOS, especialmente em um contexto agroecolégico
coerente, ou seja, sem a necessidade de uso e descarte de reagentes quimicos sintéticos.

Diante do exposto, a hipotese deste trabalho € que a espectroscopia de reflecténcia vis-
NIR pode ser utilizada para a predigéo razoavelmente boa (R? > 0,6) dos teores de C, N e P do
solo. Sendo assim, o objetivo geral deste trabalho foi avaliar a acuracia da espectroscopia Vvis-
NIR, aliada ou ndo a diferentes técnicas de pré-processamentos espectrais, na predicdo dos
teores de C, N e P de solo identificado como Planossolo Haplico, sob sistema organico de
producdo de hortalicas em Seropédica, Rio de Janeiro.



2. REVISAO DE LITERATURA
2.1. Matéria Organica do Solo

O solo pode ser definido como corpo natural dindmico que ocupa a maior parte do manto
da Terra e que é constituido por materiais minerais e organicos (EMBRAPA, 2009). A porcéao
organica é chamada de matéria organica do solo e, por sua vez, pode ser definida como material
resultante da deposicéo de residuos de plantas e animais, vivos ou mortos, em varios estagios
de desenvolvimento (THENG, 1989).

A partir da entrada desses residuos organicos de diversas naturezas ha uma série de
transformac6es bioldgicas, quimicas e fisicas continuas formando, gradativamente, um sistema
complexo de substancias com caracteristicas e funcbes variadas (CAMARGO et al. 1999).
Essas substancias sdo chamadas de himicas e ndo humicas, de acordo com seu grau de
complexidade. As substancias ndo himicas sdo as constituidas por estruturas biologicamente
ativas e quimicamente bem definidas, como as alifaticas e aromaticas de baixo peso molecular.
Essas sdo utilizadas como substratos para 0s microrganismos e por isso tém rotatividade
relativamente rapida no solo (ANDERSON, 1979). Por outro lado, substancias humicas séo
aquelas constituidas por macromoléculas, mais estabilizadas e persistentes no sistema, quando
comparada as anteriores. Como as substancias himicas sdo mais resistentes a decomposicéo,
acabam ficando ali acumuladas, através de diversos mecanismos, formando entdo a principal
reserva organica dos solos.

A decomposicdo da MOS depende principalmente das condicGes climaticas e edaficas
do ambiente, da comunidade de decompositores e da qualidade do solo a ser decomposto.
(ANDERSON & SWIFT, 1983). Em solos tropicais, como € o caso dos solos brasileiros, o
processo de decomposic¢do da MOS é muito intenso, de forma que a umidade e a temperatura
sdo os fatores que mais influenciam as taxas de mineralizacdo no solo, ou seja, 0 processo onde
as substancias organicas sao convertidas em substancias inorganicas (STANFORD et al. 1973)

A matéria organica humificada influencia as varias funcdes e processos biologicos,
fisicos e quimicos que ocorrem no solo como a ciclagem de nutrientes, complexacdo de
elementos toxicos, estruturacdo das particulas, infiltracdo e retencdo de agua, susceptibilidade
a erosdo, além de ser fonte priméaria de nutrientes as plantas, especialmente de C, N, P, S e
micronutrientes (GREGORICTH et al,1994; REEVES, 1997; TAM et al, 1998; SHEPHERD
et al, 2002; CONFORTI et al, 2013). Nesse sentido, a MOS é um atributo decisivo para a
definicdo e monitoramento da qualidade do solo, além de ocupar uma posi¢do central na
manutencdo dos ambientes agricolas (FRIGHETTO, 2000).

Em solos sob vegetacdo natural, a MOS encontra-se em equilibrio dindmico, com teores
praticamente constantes ao longo do tempo (D’ANDREA et al., 2004). Porém a transformago
das areas de vegetacdo natural em areas de cultivo agricola implica em mudancas na estrutura
e no funcionamento natural do solo, alteracdo na dindmica da matéria organica nesses
ambientes, influenciando em novas taxas de adigéo e perdas de MOS no sistema (EBELING et
al., 2008; NUNES et al., 2011). Dessa forma, um novo equilibrio é atingido conforme as
caracteristicas do sistema de manejo adotado e das condi¢Ges edafoambientais da &rea
(FREITAS et al., 2000).

Alguns sistemas de cultivo agricola, chamados sustentaveis, consideram a conservagdo
e ampliacdo da biodiversidade além da producdo através de principios ecologicos,
socioeconbémicos e agrondmicos (ALTIERI, 1989; ASSIS, 2006). Dessa forma, diversas
técnicas alternativas sdo utilizadas como a adubacdo organica, através do uso da matéria
orgénica decomposta como fonte de nutrientes; cobertura vegetal do solo; rotacdo de culturas
vegetais e etc. Nesse contexto, ha nesses sistemas sustentaveis, entre outros fatores, a intengédo
de aumentar a concentragdes e a qualidade da MOS.



2.2. Sensoriamento Préximo do Solo

Em uma producdo agricola é importante monitorar os fatores que influenciam o
ambiente de cultivo para que sejam tomadas as estratégias de manejo, independentemente de
qual seja o sistema adotado. Sabida a importancia da MOS, sua quantificacdo através das
concentracdes de C, N e P pelos métodos tradicionais de laboratorio demanda tempo; uso de
reagentes quimicos toxicos, como por exemplo &cido sulfarico, acido cloridrico, molibdato de
amonio, que nem sempre sdo descartados de forma ambientalmente segura (EMBRAPA, 2009).
Além disso, essas analises geralmente sdo caras, demoradas e restringem o nimero de amostras
representativas de uma regido (VISCARRA ROSSEL, 2011).

A partir da década de 1970, comecaram a ser desenvolvidos métodos de analises
utilizando sensores, que tém a capacidade de medir parametros do solo de forma rapida, com
uma boa relacdo custo beneficio dando origem a dados de qualidade (MCBRATNEY et al.,
2006; SIQUEIRA et al., 2010). Além disso, para a analise com sensores ndo € Necessario o uso
de reagentes quimicos, 0 que € seguro para 0 meio ambiente e proporciona seguranga condi¢des
de trabalho para os analisadores (ROSSEL e BEHREN, 2010).

Os sensores podem ser divididos conforme a proximidade ao alvo, que nesse caso passa
a ser o solo. Enquanto os sensores remotos obtém informacdes sem que haja contato fisico, 0s
sensores proximos obtém sinais quando o detector esta em contato direto ou a uma distancia de
no maximo a 2 metros do solo (VISCARRA ROSSEL e MCBRATNEY, 1998; VISCARRA
ROSSEL et al., 2010). As vantagens do sensoriamento proximo € que suas analises podem ser
realizadas em superficie e subsuperficie e com o tempo, esses sensores estdo se tornando
menores, mais rapidos, mais precisos, mais eficientes em energia e mais inteligentes
(VISCARRA ROSSEL et al, 2011).

As técnicas mais pesquisadas para sensoriamento proximal de solo incluem métodos
optico (reflectancia espectral), elétrico (condutividade elétrica) e eletroquimico (elétrons ions
seletivos) (GEBBERS & ADAMCHUK, 2010; ADAMCHUCK et al.,, 2015). Os
eletroquimicos mais comuns utilizam membranas ion-seletivas para detectar a atividade de ions
como hidrogénio potassio e nitrato. A condutividade elétrica aparente do solo pode ser utilizada
como indicador de caracteristicas como salinidade, textura, umidade, densidade, lixiviacdo
(CORWIN & LESCH, 2005). A reflectancia espectral, em diversos comprimentos de onda,
pode ser utilizada para determinacéo de cor, classe de solos, composi¢do mineraldgica, teor de
umidade, granulometria e, com o auxilio de técnicas quimiométricas, a predi¢do do teor de
MOS (EPIPHANIO et al., 1992; VISCARRA ROSSEL et al., 2008).

2.3. Espectroscopia de Reflectancia Difusa

A espectroscopia de reflectdncia difusa (ERD) é uma técnica que, a partir de dados
espectroscopicos da energia, registra o reflexo da luz ou de ondas ou particulas de uma
superficie opaca através de um sensor. O principio da ERD é fundamentado na Lei de Beer-
Lambert, que conceitua que quando uma energia eletromagnética incide sobre um alvo, parte
dos varios comprimentos de onda incididos sobre ele sdo absorvidos por essa amostra, parte
atravessa sua superficie e parte é refletida de forma difusa, ou seja, espalhada em muitos
angulos (STONER & BAUMGARDNER, 1986). Essa energia € registrada por um sensor e
decomposta em diferentes comprimentos de onda, de forma continua ao longo do espectro
eletromagnético, onde ficam definidas suas fei¢des, que sdo conhecidas como curva espectral
ou assinatura espectral (NOVO, 1992; MORAES, 2002). Uma ilustracdo de todo esse processo
pode ser observada na Figura 1.



Luz incidente Sensor

Figura 1. llustracdo da luz incidindo em uma amostra solida e as fracfes de energia refletidas
de forma difusa pela mesma e captadas por um sensor (Adaptado de STEMBERG,
VISCARRA ROSSEL, MOURAZEN 2010).

O solo é um alvo opaco, tem capacidade intrinseca de absorver e refletir luz incidente.
Dessa forma, conforme variam as moléculas presentes na amostra de solo, varia a resposta das
mesmas a radiacdo, formando bandas que sdo registradas no espectro eletromagnético gerando
curvas espectrais especificas (MARTIN-NETO et al., 1996; DALMOLIN et al., 2005). Dessa
forma, a partir de uma leitura de ERD ¢é possivel obter informacfes sobre atributos e
caracteristicas do solo como a presenca de minerais (VISCARRA-ROSSEL et al., 2006); teores
de argila, areia, silte (BEN-DOR et al.,, 2008); carbono orgénico e matéria organica
(MOUAZEN et al., 2007; DEMATTE., 2011).

As medic¢es dos atributos do solo acontecem de forma direta ou indireta. Para medicGes
diretas, as relacdes sdo baseadas em fendmenos fisicos que afetam a refletancia da luz em uma
parte especifica do espectro. Para medicGes indiretas, as relacdes sdo realizadas a partir de um
dominio finito e os efeitos combinados de varios atributos podem estar relacionados a uma
determinada caracteristica do solo. Exemplos de medicdes diretas e indiretas sdo o teor de agua
e a MOS, respectivamente. Para a MOS, suas medi¢Bes sdo possiveis gracas as medicGes
indiretas, a partir das funcbes de pedotransferéncia, que predizem certas propriedades do solo
a partir de outras obtidas mais facilmente (BOUMA, 1989; BUDIMAN, 2003).

2.4. Espectroscopia vis-NIR

Para o estudo de MOS, as faixas do espectro eletromagnético mais comumente utilizada
sdo as do visivel (vis\visible - 350 a 750 nm) e infravermelho préximo (NIR\near infrared - 750
a 2.500 nm). Essas porg¢des estdo representadas na Figura 2.

A espectroscopia de reflectancia vis-NIR tem sido apontada alternativa na analise de
solos, pela rapidez, ndo utilizacdo de reagentes quimicos e ndo destrutividade a amostra
(VISCARRA ROSSEL et al., 2006; DEMATTE et al., 2006; BEN-DOR et al., 2008;
VASQUES et al., 2008). Dessa forma, séo feitas medi¢fes simultaneas e repetiveis, o que
proporciona significativa vantagem sobre as medigdes através das analises convencionais em
laboratério (PASQUINI, 2018).
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Figura 2. Espectro eletromagnético com detalhe para as porc¢des do visivel (350 a 750 nm),
NIR - infravermelho préximo (750 a 2500 nm), além do MIR — infravermelho médio (2500
a 25000nm) e FIR — infravermelho distante (25000 a 100000 nm).

Essas analises sdo possiveis porque ao absorver a radiacéo vis-NIR, as moléculas que
compdem a amostra de solo tém seus elétrons externos promovidos do estado fundamental a
excitacdo. A diferenca de energia entre esses dois estados ou a alteracdo na amplitude da
vibracdo, alongamento ou flexdo molecular é emitida e registrada pelo sensor através de curvas
espectrais com fei¢Bes facilmente distinguiveis de absorcédo e reflectancia. Essas feicdes vis-
NIR estdo relacionadas aos atributos do solo como agua livre e argila mineral; matéria organica
e minerais ndo coloridos, como 6xidos de ferro, carbonatos e sais e podem ser observadas na
Figura 3 (STONER; BAUMGARDNER, 1981; BEN DOR et al., 1999; DEMATTE, 2002).
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Figura 3. Curvas espectrais tipicas de solos nas porcdes vis (A) e NIR (B) do espectro
eletromagnético. (Adaptado de VISCARRA ROSSEL et al, 2011).

As medig0es a partir de dados espectrais vis-NIR podem ser diretas ou indiretas. Para
medicOes diretas, as relagdes sdo baseadas em fendmenos fisicos que afetam a refletancia da
luz em uma parte especifica do espectro, como por exemplo, a mineralogia do solo ou o teor de
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agua. Para as medic0es indiretas, as relagdes sdo determinadas por uma combinacgéo de varios
atributos relacionados a uma determinada caracteristica, como por exemplo a MOS, devido as
conotacdes, flexdes e alongamento dos grupamentos de NH, OH e CH (VISCARRA-ROSSEL
et al, 2006). As absorcdes no vis-Nir das moléculas orgéanicas, dependem dos grupamentos
funcionais, chamados cromdforos, que contém elétrons de valéncia de baixa excitacdo energia.
Dessa forma, séo fornecidas informagdes sobre a estrutura dos grupos funcionais presentes na
matéria organica, bem como sobre a natureza de suas ligacGes quimicas e sua reatividade
(STEVENSON, 1994). Além disso, a presenca de SOM afeta a cor do solo e, portanto, poderia
estar diretamente relacionado a regido visivel do espectro (BAUMGARDNER et al, 1970).
Dessa forma, as curvas espectrais do solo podem ser utilizadas tanto para 0 monitoramento da
qualidade, fertilidade e manejo do solo de areas ambientais e agricolas, através das analises
qualitativas (SHEPHERD & WALSH, 2007).

A partir do final da década de 1990, com o avanco da agricultura de precisao, muitos
estudos tém sido realizados usando a ERD Vis-NIR também para andlises quantitativas de
atributos do solo (DEMATTE e GARCIA, 1999; VISCARRA ROSSEL et al., 2006). Os
atributos quantificados variaram entre mineralogia, quimica e fisica do solo (VISCARRA
ROSSEL et al., 2006; GENU & DEMATTE, 2011), levantamentos de solos (DEMATTE et al.,
2004; VISCARRA ROSSEL e WEBSTER, 2011), mapeamento digital de solos (VISCARRA
ROSSEL & MCBRATNEY, 2008), avaliacdo da qualidade do solo (BEN-DOR et al., 2009;
MOUAZEN et al., 2005), agricultura de precisdo (VISCARRA ROSSEL & CHEN, 2011), e
especialmente para determinacdo de C e MOS (VISCARRA ROSSEL et al, 2006; VASQUES
et al, 2009).

2.4.1. Vis-NIR e MOS em solos brasileiros

No Brasil, do ponto de vista geografico, predominam os solos sob dominio climatico
tropical, que ocorrem na faixa que se estende desde o extremo norte do Estado de Roraima
(aproximadamente 5 graus N) até a cidade de Sao Paulo (aproximadamente 23,5 graus ao sul
do equador). Mais ao sul desta latitude de Sdo Paulo ocorrem solos sob dominio climético
subtropical, que possuem caracteristicas diferentes quando comparados aos outros solos
distribuidos pelo Brasil (compreendendo parte do estado de Séo Paulo, Parana, Santa Catarina
e Rio Grande do Sul).

Apesar da crescente disponibilidade dos equipamentos utilizados para a realizagdo das
analises espectrais Vis-NIR, associado a maior demanda, oportunidades de pesquisa e aplicacédo
da técnica, poucos trabalhos dessa técnica em solos brasileiros tém sido publicados, quando em
comparagdo com os estudos feitos e publicados em solos do resto do mundo. Uma pesquisa no
banco de dados de periddicos Scopus mostra essa relacdo entre as publicacdes a respeito desse
tema e pode ser observado na Figura 4.
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Figura 4. Numero de publicaces cientificas abordando o uso de técnicas espectroscopicas Vis-
NIR em solos mundiais e em solos brasileiros (Dados retirados do banco de dados Scopus
em dezembro de 2019).

Os estudos referentes aos Gltimos 5 anos que tratam a respeito da predi¢do de C, N, P a
partir de dados espectroscépicos de solos brasileiros foram compilados, conforme mostra a
Tabela 1.

Terra tem se dedicado a pesquisa de dados de uma Biblioteca espectral de solos que
compreende amostras de terra de regides de producdo de cana-de aglcar nos estados de Mato
Grosso do Sul, Minas Gerais, Sdo Paulo e Goias. Seus ultimos trabalhos focaram em promover
uma melhor acurécia nas predi¢fes de C organico, seja com o teste e escolha dos melhores
métodos de analise multivariada e pré-procesamentos espectrais (TERRA, 2015), como com
trabalhos inovadores abordando a fuséo de bandas pertencentes ao vis-Nir e a0 Mir para criacdo
de melhores preditores de C organico em comparagdo com andlises dessas respostas espectrais
feitas separadamente (TERRA, 2019).

Na regido Norte do Brasil, Almeida e colaboradores indicam que em areas da bacia do
Acre somente sejam usadas quantificacfes de N por espectroscopia NIR em caso de grandes
volumes de processamento de dados, pois 0 método nesse caso nao substituiu a exatidao obtida
através das analises elementar. Araldjo pesquisou solos Amaz6nicos, mas de Terra preta do
indio no Para, ou seja, com grandes quantidades antropicas de MOS. Foi comparada a precisdo
e eficiéncia dos métodos de vis-NIR e MIR. Apesar de obterem um bom ajuste em ambos 0s
sensores, 0s modelos de previséo baseados nos dados do MIR superaram os com base em dados
vis — NIR nesses tipos de solos. Além disso, ambos subestimaram o conteido de C desses solos.
Por outro lado, Pinheiro e colaboradores obtiveram em solos da Amazodnia alta aplicabilidade
nas técnicas espectroscopicas Vvis-NIR em relacdo aos contetidos de C e N e enquanto
encontraram limitacGes aos modelos de P daqueles solos.

Em clima subtropical, Moura-Bueno e Dotto exploram técnicas de pré-processamentos
espectrais e analises multivariadas na predicdo de C, com o espectro vis-NIR completo ou
reduzido, nos estados do Rio Grande de Sul e Parana. Felix (2016) observou a influéncia da
granulometria das amostras de terra do Parana, com melhores resultados em particulas menores
que de 0,2mm. Também no Parand, Carra (2019), obteve bons ajustes dos modelos preditivos
C e N para solos sob diferentes condigdes climéticas e usos de terra.



Tabela 1. Principais trabalhos no pais abordando espectroscopia vis-NIR para predicdo de
C, N e P do solo nos altimos 5 anos.

Referéncias Local N* Atributo PP R2 RMSE RPD

Carra, 2019 PR 431 C PCA 0,93 478 0,71
SP, MG,

Terra, 2019 MS, GO 1259 C SMV 0,69 3,38 -

PLSR 0,71 0,58 -
MLR 0,71 0,56 -
SNV 0,63 0,64 -
RF 0,62 0,63 -

PLSR 0,74 0,58 -
PCR 0,73 0,59 -
MLR 0,74 0,59 -
SVM 0,78 0,53 -
Dotto, 2018 SC 595 C RF 0,76 0,58 -
BMA 0,74 0,59 -

WAPLS 0,65 0,62 -

GPR 0,73 0,61 -

ANN 0,69 0,64 -

Moura-Bueno, 2019 RS 841 C

Pinheiro, 2017 AM 434 C PLSR 0,71 5,69 1,84
PLSR 0,88 0,34 -
Dotto, 2017 SC 299 C SUM 0.86 0.36 i
Félix, 2016 PR 214 C PLSR 0,57 - 1,55
SP, MG,
Terra, 2015 MS, GO 1254 C SVM 0,65 0,16 -
.. 0,90 1,50 -
Araujo, 2015 PA C PLSR 0.05 6.40 i
Carra, 2019 PR N PCA 0,93 4,78 0,71
Félix, 2016 PR 214 N PLSR 0,68 - 1,92
Almeida et al. 2016 AC 168 N PLSR 0,84
Carra, 2019 PR 431 p PCA 0,685 0,83 6,2
Pinheiro, 2017 AM 434 P PLSR 0,11 1,98 1,05
Félix, 2016 PR 214 p PLSR 0,37 - 1,26
SP, MG,
Terra, 2015 MS, GO 1254 P SVM 0,24 0,37

* N - Namero de amostras.
2.5. Quimiometria

A quimiometria pode ser definida como uma area da quimica que, através de
ferramentas matematicas, fisicas e computacionais, tem o objetivo de planejar ou selecionar
condicBes Otimas de medidas e experimentos, extraindo o maximo de informacdo quimica
relevante (FERREIRA et al, 1999). A quimiometria teve origem a partir da popularidade do
uso da analise multivariada, para quantificar uma variavel de interesse, com o tratamento e
predicdo de dados quimicos atraves de modelos estatisticos.

Os modelos estatisticos determinam a relacdo entre propriedades medidas e
concentragOes quimicas a partir de dois conjuntos de variaveis. Dessa forma, € desenvolvido
entdo um modelo de treinamento para um conjunto de amostras cujas propriedades sdo
conhecidas. Uma vez estabelecido, esse modelo de treinamento, ele é utilizado para classificar
novas amostras, com concentragdes desconhecidas da mesma propriedade de um novo
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conjunto, chamado de validacao, para entdo determinar quanto das propriedades medidas estdo
relacionadas de fato as concentracbes quimicas (SANCHEZ & KOWALSKI, 1988;
BRERETON, 2003). Para estudos com espectrometria, por exemplo, os modelos determinam
0 quanto as curvas espectrais das amostras relacionam-se com informagdes quimicas do solo,
como C, N e P. Um esquema representando as etapas para a criacdo de um modelo pode ser
visto na Figura 5.

ESPECTRORRADIOMETRO ESPECTROS MODELO 006
Qo — 000
O — .’ — — —1Y
Qo — Y =] :
oooQ
AMOSTRAS INSTRUMENTO RESPOSTA

Figura 5. Diagrama representando o processo de treinamento de um modelo quimiomeétrico.
(Adaptado de FERREIRA, 1999).

Para a cria¢do dos modelos estatisticos, sdo necessarias inumeras analises multivariadas,
ou seja, A regressdo por minimos quadrados parciais (PLSR, do inglés Partial Least Squares
Regression) é uma das técnicas mais comuns para a calibracao e predi¢do de modelos espectrais
de solos (MCCARTY et al, 2002).

2.5.1. Pré-processamento de curvas espectrais

A aquisicdo de dados espectrais ndo fornece apenas informacdes relevantes sobre a
presenca, auséncia e concentracdo de compostos quimicos. Dependendo da técnica de aquisi¢do
de espectros, equipamentos, condi¢cBes experimentais, acessorios utilizados, uma grande
guantidade de informacdo relativa aos fendmenos fisicos, erros aleatorios e sistematicos
também estardo presentes no conjunto de dados adquiridos. Essas interferéncias podem causar
ndo-linearidades entre os espectros e as concentracdes dos componentes de interesse resultando
em ruido aleatorio, desvio de linha de base e efeito de espalhamento nos espectros, o que pode
afetar a robustez dos modelos de calibracdo posteriores. Dessa forma, para que essas
informagdes ndo encubram a informacdo que estd verdadeiramente relacionada com a
propriedade que se deseja estudar, uma série de ferramentas matematicas, chamadas de pré-
processamentos espectrais, sdo utilizadas (SIMOES, 2008). As ferramentas matematicas das
técnicas de pré-processamento espectral operam nas amostras e sdo aplicadas as colunas da
matriz de dados, para cada variavel. Sdo exemplos desse conjunto de tecnicas a normalizacao,
correcéo de linha de base, suavizacdo, derivadas, padronizacdo pelo desvio padrdo, correcao
multiplicativa de sinal (KOWALSKI; BEEBE, 1987; FERREIRA, 2015).

Um artificio comumente utilizado para destacar e facilitar a identificacéo das feicdes de
absorcéo nos espectros € a transformacéo dos valores de reflectancia para absorbancia,e com
isso melhorar a linearidade dos espectros. Essa propriedade mede a capacidade dos materiais
em absorver radiacdes eletromagnéticas em frequéncias especificas (HOLLAS, 2004). Para
aumentar os picos quimicamente mais relevantes nos espectros e reduzir os efeitos, como o0s
desvios da linha de base e a curvatura geral, as técnicas mais comumente utilizadas incluem
correcéo de dispersdo multiplicativa (MSC) (GELADI et al., 1985) e a variagdo normal padréo
(SNV) (BARNES et al., 1989). Esses efeitos sdo provocados pela ndo-homogeneidade das
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amostras, decorrentes principalmente de diferenca de granulometria, causados pelo
espalhamento de luz.

Para reduzir o ruido aleatdrio nos sinais espectrais, ou seja, 0s sinais continuos e sem
relacdo com atributos mensuraveis, o0 método de suavizacdo é comumente utilizado. Ele atua
criando espectros médios para diminuir a relagéo sinal / ruido através do filtro de média movel,
que calcula o valor espectral de pontos considerando um intervalo definido a partir de um ponto
médio (TSAI; PHILPOT, 1998).

Métodos de derivadas realizam correcdo de linha de base e aumentam os sinais fracos,
além de remover tanto os aditivos e efeitos multiplicativos nos espectros atraveés derivagdo
numérica de um vetor que inclui um passo de suavizacdo. O primeiro derivado remove a linha
de base e elimina efeitos de fundo; a segunda derivada remove a linha de base e a linear
(SAVITZKY & GOLAY, 1964). A técnica de remocdo continua € usada para isolar
caracteristicas de absorcdo devidos a processos diferentes daqueles de interesse em espectros
de refletancia difusa (CLARK & ROUSH, 1984).

Embora alguns trabalhos na literatura ja propuseram ferramentas de otimizacdo para
pré-processamentos, a escolha do pré-processamento mais adequado para um determinado
conjunto de dados é um processo de tentativa e erro. (DEVOS; DUPONCHEL, 2011; JARVIS;
GOODACRE, 2005; FERREIRA, 2015).

2.5.2. Regressdo por Minimos quadrados parciais (PLSR)

Proposta inicialmente por H. Wold (2001), PLSR é uma técnica de analise de dados
multivariados utilizada para relacionar uma ou mais varidveis resposta (Y) com diversas
variaveis independentes (X), com base no uso de fatores. PLSR € especialmente empregado
guando existem muitas varidveis preditoras altamente colineares (COZZOLINO & MORON,
2003; VISCARRA ROSSEL et al., 2006; CONFORTI et al. 2013).

O PLSR implica em encontrar um conjunto de vetores base (componentes principais)
para os dados espectrais € um conjunto separado de vetores base para 0s dados de concentracdo
e, em seguida, relaciond-los um com o outro. O primeiro componente principal corresponde
aquele que descreve a maxima quantidade de variancia das amostras. Quando toda a variancia
de um conjunto de amostras ndo puder ser explicada por apenas um componente principal, um
segundo componente principal perpendicular ou ortogonal ao primeiro sera utilizado, e assim
por diante de forma que o modelo ird selecionar o menor nimero possivel de variaveis
independentes com o maximo de informacBes contidas em cada variavel, e altamente
correlacionadas umas com as outras (ADAMS, 1995). Dessa forma, ap6s a modelagem,
teoricamente, a matriz dos quadrados dos residuos deverd conter apenas a variancia ndo
explicada associada ao ruido.

Essa € uma das técnicas estatisticas multivariadas mais comuns para calibracdo e
predicdo de atributos dos solos devido a facilidade na interpretacdo dos seus resultados
(REEVES, MCCARTY et al., 2002; COZZOLINO; MORON, 2006; VISCARRA ROSSEL;
MCBRATNEY, 2006).
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3. MATERIAL E METODOS
3.1. Caracterizacdo da Area de Estudo

O estudo foi realizado no mddulo experimental de produgdo organica intensiva de
hortalicas (modulo experimental), localizado no Sistema Integrado de Producdo Agroecoldgica
(SIPA), conhecido como ‘Fazendinha Agroecoldgica - Km 47°, no municipio de Seropédica,
estado do Rio de Janeiro Brasil, entre as coordenadas 22°46’S, 43°41’W (Figura 6). O SIPA
tem por objetivo desenvolver atividades de pesquisa, ensino e extensdo em agroecologia e
agricultura orgéanica, em um esfor¢o conjunto de pesquisadores da Embrapa Agrobiologia,
Embrapa Solos, PESAGRO-RJ e de professores e pesquisadores da Universidade Federal Rural
do Rio de Janeiro (UFRRJ) e do Colégio Técnico da UFRRJ (CTUR) (ABBOUD et al., 2005).
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Figura 6. Localizacdo do médulo experimental de producgdo organica intensiva de hortalicas.

O modulo experimental, por sua vez, foi criado em 2010 com a proposta de ser um
sistema de producdo organica intensiva de hortalicas e tem 1,06 hectare de area total. Ele esta
localizado em relevo plano com altitude média de 33 m e clima predominante do tipo Aw,
caracterizado como quente e Umido (KOPPEN, 1948), com valores médios de temperatura de
24,5° C e precipitacdo pluviométrica anual de 1.213 mm (DIAS, 2007).

A organizac&o espacial e 0 uso da terra das subareas do mddulo pode ser vista na Figura
7 e € composta por area de hortalicas a pleno sol (canteiros: 3.578m?); cultivo de hortalicas
protegidas por telados, com redugéo de 30% de radiacao incidente (telados: 527 m?); cultura de
capim (Pennisetum purpureum) (capineira: 3982 m?); leguminosas arbustivas (Gliricidia
sepium) (gliricidia: 694m?2) além de uma area destinada a compostagem orgéanica (C.0.), bordas
das culturas e ruas de trafego (1842 m?) (MATA, 2012).
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Figura 7. Organizacdo espacial das subareas do modulo experimental compostas por capineira,
gliricidia, canteiros a céu aberto e telados com horticolas e area de compostagem organica
(C.0.) (Adaptado de MATA, 2012).

As areas do mddulo experimental representam, em sua pratica de manejo, duas regides
principais, com objetivos distintos. Sao elas: regido de producdo de hortalicas, com interesse
comercial (Canteiros e Telados) e regido de producdo de biomassa vegetal (Capineira e
Gliricidia), que tém suas palhadas utilizadas como cobertura morta nas culturas de hortalicas.
Dessa forma, hd importacdo e exportacdo de matéria organica de uma area para a outra dentro
do préprio modulo. Segundo Ronquim (2010), essa pratica proporciona, a longo prazo, uma
melhora nas condicdes fisicas, bioldgicas e quimicas de solo tropicais, de forma econémica e
ecologica e é uma das técnicas agroecoldgicas adotadas no SIPA.

3.2. Amostragem e Caracterizacao do Solo

O solo do modulo experimental foi classificado como Planossolo Haplico Distréfico
arénico (DIAS, 2007) e tem sido amostrado e monitorado, anualmente, desde 2011 para que
seja avaliada a qualidade do solo, mediante implantacdo de técnicas agroecoldgicas de manejo.
Para garantir que a amostragem fosse feita sempre nos mesmos locais ao longo do tempo, a area
foi identificada em um grid de, aproximadamente, 5 x 5 metros através de GPS com correcdo
diferencial (GPS TRIMBLE PRO XP), exceto na area de capineira, que foi amostrada em um
grid de 10 x 10 metros para abranger as variacdes e caracteristicas do solo. As coletas de
amostras de terra foram realizadas com trado tipo holandés, na profundidade de 0 a 20 cm, em
cada um dos pontos georreferenciados, com 133 amostras destinadas a analise de C (grupo 1)
e 294 amostras destinadas as andlises de N e P (grupo 2, correspondente ao numero total de
amostras do médulo).

As coletas foram realizadas nos meses de agosto, nos anos de 2013 e 2014. Ao longo do
tempo, algumas amostras foram perdidas ou tiveram sua forma original danificada no processo
de armazenamento e, por esses motivos, foram inutilizadas na elaboracéo deste trabalho. Na
Figura 8 é possivel observar os pontos de amostragem para do médulo experimental para 0s
grupos 1 e 2 (A) e as amostras que ndo se perderam e entdo foram de fato utilizadas para o
trabalho, sendo o total de 244 e 271 para os anos de 2013 (B) e 2014 (B), respectivamente.

13



Amostras totais

Figura 8. Croqui dos pontos de coleta do médulo experimental georreferenciados. Todos 0s
pontos (vermelhos e azuis) representam as amostras do grupo 2, coletadas em 2013 e os
pontos em vermelho representam as amostras do grupo 1, coletadas em 2014.

3.3. Andlises Quimicas do Solo

As amostras de terra foram secas ao ar, destorroadas, passadas por peneira de malha de

2 mm para a obtencdo da terra fina seca ao ar (TFSA). Uma parte das amostras foi direcionada
as analises quimicas, que ocorreram no Laboratorio de Quimica Agricola na Embrapa
Agrobiologia e no Laboratério de Matéria Organica do Solo, do Departamento de Solos da
UFRRJ. Foi realizada a anéalise dos teores de carbono organico total pelo método Walkley &
Black modificado (EMBRAPA, 2009). O teor de nitrogénio total pelo método Kjeldahl
14



(SILVA, 2009) e o teor de fésforo disponivel trocavel através do método de Mehlich 1, com a
determinacdo do fosforo por colorimetria (MEHLICH, 1953).

Para comparagdo com as reflectancias e absorbancias espectrais, a MOS foi estimada a
partir do célculo de van Bemmelen, que assume teor no solo de 58%, pela seguinte equacao:

MOS = C x 1,724 (1)
3.4. Estatistica Descritiva dos Dados

A estatistica descritiva (minimos, maximos, 1° e 3° quartis, média, mediana, desvio
padrdo, assimetria e curtose) dos teores de C, N e P foi calculada e utilizada para resumir e
avaliar a magnitude da dispersdo do conjunto de dados. O conjunto de dados foi submetido a
analise visual de histogramas para avaliar a normalidade dos dados.

3.5. Analises Granulométricas do Solo

As fragOes granulométricas do solo interferem nos teores de MOS e também nas feigdes
de absorcdo e intensidade de reflectancia geradas nas suas curvas espectrais. Dessa forma, uma
parte das amostras de terra foi encaminhada ao Laboratério de Fisica do Solo da UFRRJ para
determinacédo da granulometria atraves da realizacdo do método da Pipeta (EMBRAPA, 1997).
As quantidades de areia, argila e silte foram obtidas e utilizadas para auxiliar na interpretacéo
da matéria organica e dos dados espectrais do solo.

3.6. Analises Espectrais do Solo

Uma parte das amostras de TFSA foi encaminhada para o Laboratério de Contaminantes
e Residuos da Embrapa Solos, onde as amostras foram homogeneizadas e colocadas em placas
de Petri (90 mm de diametro) formando uma camada de aproximadamente 1 cm de espessura.
Em seguida, as particulas foram niveladas dentro das placas, para minimizar os efeitos da
rugosidade, e entdo colocadas na estufa por 12h a 45-50°C, para eliminar o efeito da umidade.

As leituras espectrais das amostras foram obtidas pelo equipamento FieldSpec 4
(Malvern Panalytical B.V., Almelo, Holanda) que registra a reflectancia difusa do solo na
regido Vis-NIR do espectro eletromagnético na faixa espectral de 350 a 2500 nm. As placas de
Petri com as amostras foram colocadas sobre uma mesa giratéria (ASD Turntable), girando a
22 rotacGes por minuto, para que as leituras espectrais fossem feitas com a amostra em
movimento. Foi realizada uma leitura espectral por amostra/placa que, por sua vez, foi obtida
através da média de 100 varreduras de repeticdo interna feita pelo instrumento, para a aquisicdo
de um espectro representativo. As leituras das amostras de terra foram feitas em conjuntos de
dez e, antes do escaneamento de cada conjunto, foi obtida uma varredura do padrdo
Spectralon® branco (LabSphere, North Sutton, NH, EUA) com 100% de reflectancia. As etapas
do processamento das amostras e 0 conjunto de instrumentos utilizados para as leituras
espectrais podem ser visualizados na Figura 9.
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Figura 9. Da esquerda para a direita: amostras de TFSA colocadas e niveladas em placas de
Petri; estufa; conjunto de equipamentos necessarios as leituras espectrais, sendo A-
espectrorradiémetro Field Spec 4; B- disco-mesa giratoria suporte para as placas de Petri;
C- computador acoplado ao espectrorradiémetro e D - placa de spectralon.

3.7. Pré-Processamento dos Dados Espectrais do Solo

Os dados de reflectancia (REF) das amostras coletadas em 2014 e 2013 foram
submetidos a seis pré-processamentos, de forma a avaliar qual a estratégia mais adequada para
0 pré-processamento dos dados, sem remover informacGes espectrais importantes e
evidenciando as que tém ligacdo com as concentracdes de C, N e P. Os pré-processamentos
utilizados foram: suavizacdo por média mdvel simples com janela de 9 bandas (SMO),
derivagdo Savitzky-Golay com polinémio de 12 ordem e janela de 9 bandas (SGD), variagao
normal padrdo (SNV), correcdo multiplicativa de sinal (MSC) e correcdo do continuo (CRR).

3.8. Modelagem Quimiométrica de C, N e P do Solo
3.8.1. Particionamento dos dados

O conjunto de dados referente a amostra de terra coletas em 2014 foi dividido ao acaso
em conjunto de treinamento (~70% das amostras) e conjunto de validacdo (~30%; das
amostras), por meio da fungdo ‘sample’ do software estatistico R (R CORE TEAM, 2017), que
faz uma selecdo aleatdria dos dados. Os dados de 2013 ndo sofreram particionamento, conforme
pode ser observado na Tabela 2.

Tabela 1. Conjunto de dados particionado em treinamento e validacdo para as amostras
referentes ao ano de 2014 e conjuntos globais de dados para as amostras de 2013 e 2014.

Atributos 2013 2014
Conjunto Global ~ Conjunto Global  Treinamento Validacéo
Carbono 123 122 86 36
Nitrogénio 244 271 190 81
Fdsforo 244 271 190 81

Dessa forma, para o grupo 1 ficaram 122 amostras no conjunto global, 86 e 36 amostras
nos conjuntos de treinamento e validagdo, respectivamente. Para as amostras do conjunto 2
ficaram 271 amostras no conjunto global, 190 e 81 para os conjuntos de treinamento e de
validacdo, respectivamente. As amostras do ano de 2013 ficaram com 123 amostras para o0
grupo 1 e 244 para o grupo 2.
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3.8.2. Anélise multivariada

Foi utilizada regressdo por minimos quadrados parciais (PLSR) nos dados de
treinamento e validagdo das amostras do ano de 2014 e apenas validagéo para os dados de 2013,
ambos a partir de dados espectrais pré-processados (ABS, SMO, SGD, SNV, MSC e CRR),
além dos dados de reflectancia (REF) com o objetivo de alcancar o melhor ajuste entre os teores
de C, N e P e dados espectrais Vis-NIR através de suas variaveis latentes extraidas por PLSR.

3.8.3. Construcéo e validacdo dos modelos de predicdo PLSR

Para a construcdo dos modelos de predicdo, foi realizado um treinamento do algoritmo
a partir dos dados do conjunto de treinamento das amostras de 2014. Para a sele¢do do numero
de variaveis preditoras, ou componentes principais, foi utilizada a validagdo cruzada, através
da técnica de leave-one-out. Nesse processo, um conjunto menor foi formado com 10 amostras,
sendo uma delas removida para que tivesse sua concentragéo de C, N ou P predita a partir das
outras nove amostras remanescentes. Esses testes (treinamentos) foram repetidos 10 vezes, cada
vez com uma nova amostra removida e uma nova predicao a partir das restantes. Para cada teste
foi atribuido um erro quadratico médio (RMSE) em relacdo ao valor predito e ao, de fato,
obtido. O numero de componentes principais responsavel por apresentar 0 menor erro de
predicao nesse processo foi escolhido e incorporado ao modelo para entdo pudesse ser aplicado
as amostras externas ao conjunto de treinamento (amostras dos conjuntos de valida¢do). Uma
representacdo de como funciona a validacéo cruzada por leave-one-out pode ser observada na
Figura 10.

| Conjunto Global |

RMSE

Observagdes

exchuidas Tfei 10

Figura 10. Esquema mostrando o funcionamento da validagéo cruzada por leave-one-out.
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Ap0s o treinamento dos modelos, os mesmos foram aplicados as amostras referentes ao
conjunto de validagdo de 2014, para verificar o quanto de fato eles refletiram os teores de C, N
e P do solo no médulo experimental, desta vez com as amostras que ndo estavam presentes no
treinamento. Foi gerado um modelo de predi¢cdo para cara atributo do solo (C, N, P),
separadamente, por pré-processamento (ABS, SMO, SGD, SNV, MSC e CRR) e para os dados
brutos de reflectancia (REF) totalizando 42 modelos treinados e validados para os dados de
2014,

No processo de modelagem, h& uma etapa de validagdo onde novas amostras, do mesmo
solo em estudo, avaliam a capacidade preditiva dos modelos, diferentes da validagéo cruzada e
validacdo externa. Nesse caso, para avaliar a aplicabilidade dos modelos preditivos de C, N e P
no mddulo experimental, os modelos foram validados também nas amostras referentes a coleta
de 2013 simulando uma aplicacdo na pratica rotineira do modulo como, por exemplo, para o
monitoramento temporal dos teores desses nutrientes no solo.

3.8.4. Avaliacao dos modelos de predicdo PLSR

A avaliacdo da performance dos modelos de predi¢éo foi realizada de acordo com seus
ajustes e acurécias atraves do calculo dos seguintes indices: coeficiente de determinagdo — R2 -
equacao (2); raiz do erro quadratico médio — RMSE — equacéo (3); e razdo do desempenho e
intervalo interquartil — RP1Q — equagéo (4).

D (9 — )2
e = 2= 7T @
iz1 (Vi — ¥i)
1 n
RMSE = /;th—mz ©)
“| i=1
RPIQ = % (4)

Onde ¥ é o valor predito; ¥ é o valor observado; ¥ é a média dos valores observados;
n é o numero de amostras; Q1 e Q3 correspondem aos valores referentes ao primeiro e terceiro
quartis, respectivamente.

3.8.5. Remocao de outliers

O termo outlier é utilizado para designar amostras andmalas que podem estar presentes
nos conjuntos de construcdo e validagdo de modelos. No presente trabalho, foi feita a etapa de
treinamento e validacdo dos modelos a partir de dados brutos de reflectancia e a partir desses
modelos foi feita a identificacdo de outliers através da analise visual das amostras que estavam
em posi¢cdes muito aleatorias as demais, em relacdo a correlacdo linear entre dados preditos
versus dados observados. Essas amostras foram retiradas dos conjuntos as quais pertenciam
(treinamento e validagéo) e entdo novos modelos para REF foram realizados, além dos modelos
para ABS, SMO, SGD, SNV, MSC e CRR. Um fluxograma resumido de todas as etapas
realizadas nesse trabalho é apresentado na Figura 11.
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Figura 11. Fluxograma das etapas realizadas incluindo as analises quimicas laboratoriais, assim
como, as espectrais e quimiométricas desenvolvidas no presente trabalho.

19



4. RESULTADOS E DISCUSSAO
4.1. Estatistica Descritiva
Os resultados das analises quimicas dos teores de C, N e P do solo, para as mostras anos

de 2013 e 2014, foram descritos por Mata (2016) e estdo apresentados na Tabela 3, atraves dos
valores médios obtidos para cada area do médulo experimental.

Tabela 2. Estatistica descritiva dos teores de C, N e P do solo, para os anos de 2013 e 2014.

2013 2014
Observactes  C (.kg-?) N (g.kg-) P (mg.l-t) C(g.kg-) N(g.kg-) P (mg.l-?)

123 244 244 122 271 271

Minimo 0,90 0,10 2,48 0,34 0,00 2,03
Méximo 18,00 1,80 257,57 16,35 1,80 257,57
1° Quartil 4,67 0,70 27,66 4,46 0,60 37,33
3° Quartil 8,47 1,10 109,23 8,92 1,00 106,85
Média 6,89 0,87 76,59 6,77 0,84 79,62
Mediana 6,38 0,80 72,42 6,09 0,80 79,22
DP 3,16 0,30 55,38 3,01 0,30 54,59

Assimetria 0,74 0,32 0,78 0,59 0,22 0,80

Curtose 0,96 -0,21 0,32 0,04 0,25 0,56

Os valores de C variaram de 0,90 a 18,00 g-kg™ em 2013 e de 0,34 a 16,35 g-kg-! em
2014 e apresentaram um pequeno decréscimo médio de 6,89 g-kg™ para 6,69 g-kg™ dos valores
médios nesse periodo de tempo. Os valores de N variaram de 0,10 a 1,80 g-kg™* em 2013 e de
0,00 a 1,80 g-kg-1 em 2014 e também apresentaram pequeno decréscimo dos valores médios
de 0,87 para 0,84 g-kg* nesse periodo de tempo. Para os valores de P, os valores encontrados
variaram de 2,48 a 257,57 mg.I"}, apresentando média de 76,86 mg.I"t em 2013. Em 2014, a
variacéo de foi 2,03 a 257,5 mg.I"t, com média de 79,62 mg.I-%, indicando uma grande variagio
desse elemento em comparagdo com os dados de P de 2013.

Os valores de assimetria e curtose indicam a distribuicdo dos valores em torno do ponto
central e seu achatamento, respectivamente. Esses valores podem ser observados também
graficamente através dos histogramas apresentados na Figura 12.
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Figura 12. Histogramas para os dados de C, N e P do solo das amostras dos anos de 2013 e
2014, respectivamente da esquerda para a direita.

4.2. Dados Granulométricos
Para uma interpretacdo mais abrangente sobre o comportamento da fragcdo organica do

solo, representada neste estudo por C, N e P, foram utilizados os dados granulométricos do
maodulo experimental, obtidos por Mata (2012) e apresentados na Tabela 4.

Tabela 3. Fragdes granulométricas do solo referentes a cada area (capineira, gliricidia,
canteiros e telados) do modulo experimental.

Sub-Area Areiagrossa  Areiafina Areia total Argila Silte
(9.kg-") (9.kg-1) (9.kg-1) (9.-kg-") (9.kg-%)

Capineira 681,9 177,8 859,7 97,6 42,7

Gliricidia 674,5 207,1 881,6 36,5 81,8

Canteiros 610,7 223,1 833,8 86,3 79,8

Telados 564,3 210,6 774,9 127.4 97,7

A fracdo areia grossa predomina em todas as areas do modulo experimental seguida da
fracédo de areia fina. As areas da capineira, canteiros e telados apresentaram teores maiores de
argila quando em comparacéo aos teores de silte. Os valores encontrados foram de 9,76 g.kg-1,
8,63 0.kg-1e 12,74 g.kg-* de argila e 4,27 g.kg-%, 7,98 g.kg- e 7,54 g.kg-! de silte para Capineira
e Telados, respectivamente. Por outro lado, a area da Gliricicia apresentou maior concentragdo
de silte que de argila com valores de 3,65 g.kg-! e 8,18 g.kg-! para argila e silte,
respectivamente.
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Quando esses dados sdo trabalhados de forma a representar a area do médulo como um
todo (Figura 13), é possivel observar que a fracdo de areia total é extremamente alta (84 g.kg-
1) e ndo proporciona 0 surgimento de mecanismos para que a matéria organica das culturas
vegetais fique ali retida e preservada. Logo, em solos como esse, de textura arenosa, a matéria
organica labil, ou seja, a mais facilmente decomponivel, tem maior importancia na dinamica da
MOS nesses sistemas (FELLER, 1997).

WAreia WArmila W Silte

%

84%

Figura 13. Frag0es totais de areia, argila e silte do solo do médulo de producéo de hortalicas.
4.3. Dados Espectrais

As amostras de solo foram lidas nas porgdes vis-NIR do espectro eletromagnético (350
a 2500 nm). As curvas espectrais médias obtidas para os anos de 2013 e 2014, para cada area
do modulo estdo apresentadas na Figura 14, comparadas graficamente na Figura 15 e descritas
na Tabela 5. Além disso, 0 comportamento espectral do solo foi analisado qualitativamente
gracas a influéncia composi¢do mineraldgica, teor de umidade, teor de matéria organica e
granulometria no comportamento espectral dos solos (STONER; BAUMGARDNER, 1981,
BEN-DOR et al. 1997; DEMATTE, 2002).
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Figura 14. Comportamento espectral total e médio (Med), com + desvio padrdo (DP), para o
modulo como um todo (B, H) e para cada area do médulo experimental sendo elas:
Capineira (C, I); Gliricidia (D, J); Canteiros (E, L) e Telados (F, M) para os anos de 2013
e 2014.
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Figura 15. Comportamento espectral médio dos solos para cada area do modulo experimental
para os anos de 2013 (A), 2014 (B) e as médias espectrais do modulo como um todo para
as amostras referentes aos dois anos.

As amostras de todas as areas do modulo experimental apresentaram assinaturas
espectrais semelhantes para os anos de 2013 e 2014, com picos de absor¢do nas mesmas regioes
(1400, 1900, 2200 nm). Os picos de absor¢do nos comprimentos de onda proximos de 1.400
nm representam o primeiro sobretom de estiramento das ligagdes O-H, associadas as moléculas
de agua ou metal hidratado (VISCARRA ROSSEL & CHEN, 2011). Da mesma forma, a
absorcdo no comprimento de onda 1.900 nm esté relacionada a combinacdo de estiramentos e
flexbes das ligacdes O-H, presentes na molécula H20 (CLARK et al., 1990). Também
apareceram bandas de absorcao referentes a presenca de argilominerais (GROVE et al, 1992);
caulinita (2200 nm), e 6xido de ferro, que € indicado por uma concavidade presente entre 850
a 900 nm (EPIPHANIQO, 1992). Os picos de absorg¢éo entre 1.350-1.450 e entre 1.850-2.030 nm
podem estar relacionados a pequenas diferencas de umidade das amostras, mesmo apds a
secagem em estufa, na etapa de preparacdo. Em relacdo aos grupamentos ligados a fragdo da
MOS, pb6de-se observar a formacéo de feicdes referentes a presenca de C-H, O-H, N-H (1390
nm), C-O, C-N, O-H, N-H, S-H (1900 nm), C-H, N-H (2200 nm) e C-O, O-H, S-H (2350 nm)
(STEVENS, 2008).

Mais especificamente no caso da textura do solo, a influéncia no vis-NIR ocorre quanto
a intensidade da reflectancia ao longo de toda a assinatura espectral (albedo), uma vez que solos
com maior teor de argila tendem a apresentar maior agregacao das particulas que os compdem,
0 que por sua vez ocasiona menor refleccdo da energia eletromagnética incidente
(BAUMGARDNER et al., 1985; BELLINASO et al., 2010).
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Tabela 4. Reflectancia média (REF) £ 1 desvio padrdo (DP) e matéria organica do solo
(MQS) para as subareas do mddulo experimental.

Area do médulo REF REF + DP REF - DP MOS (g.kg?)

2013

Capineira 0,29 0,33 0,26 10,42

Gliricidia 0,30 0,33 0,28 10,08

Canteiros 0,28 0,30 0,26 13,77

Telados 0,27 0,29 0,25 15,28
2014

Capineira 0,28 0,32 0,25 9,38

Gliricidia 0,30 0,31 0,28 8,84

Canteiros 0,28 0,31 0,26 13,74

Telados 0,25 0,27 0,23 15,22

REF - reflectancia; DP — desvio padrdo; MOS — matéria organica do solo.

De todas as areas do modulo experimental, os telados apresentaram menor reflectancia
média em 2013 e 2014, respectivamente (0,27 e 0,25nm), maior contedo de MOS (15,28 e
15,22 g.kg), o maior teor de argila do médulo (12,74%) e morfologia mais horizontalizada das
curvas espectrais. Todos esses aspectos confirmam o que foi dito por Dematté (2012), que
quanto menor a reflectancia espectral, maior o contetdo de MOS e de argila da amostra de solo.
Da mesma forma, porém no sentido inverso, a area de gliricidia apresentou a menor
concentracdo de argila (3,64%), o menor teor de MOS (10,08 g.kg) e a curva espectral média
mais ascendente, quando comparada as demais. Caracteristicas medianas foram encontradas
nas areas de capineira e canteiros com teores de MOS de 10,42 e 13,77 g.kg para o ano 2013 e
9,38 e 13,74 para 0 ano de 2014 e reflectancia média de 0,28 e 0,29nm para 0 ano de 2013 e
0,28 para ambas as areas no ano de 2014.

Para ambos 0s anos analisados, os telados apresentaram maiores valores médios de
reflectdncia enquanto que a gliricidia apresentou os menores. A capineira e 0s canteiros
apresentaram valores equivalentes.

Como o estudo foi feito com amostras do mesmo solo, descartam-se as influéncias da
textura, mineralogia e conteddo de 6xidos sobre as varia¢fes entre as curvas espectrais. Logo,
essas variaces foram atribuidas as diferencas de manejo entre as areas do médulo, que podem
ser relacionadas aos teores de MOS. A MOS, por sua vez, absorve maior radiacdo
eletromagnética, atenuando a intensidade de reflectancia dos solos (DALMOLIN et al., 2005).

Pinheiro (2017) e Genu (2010) encontraram fei¢cGes espectrais nas curvas de solos
arenosos e tropicais, na Amazonia e em S&o Paulo, semelhantes com as obtidas no presente
trabalho. Esses solos foram classificados como neossolo quartzarénico e argissolo vermelho-
amarelo distrofico arénico, que também tem grande porcao de areia em superficie.

4.4. Pre-Processamento dos Dados Espectrais

Os dados espectrais (Vis-NIR) foram pré-processados com objetivo de melhorar a
acuracia dos modelos de regressdo. As curvas espectrais médias dos dados brutos de
reflectancia (REF) e pré-processados matematicamente para dados de absorbancia (ABS),
suavizacdo (SMO), Derivadas Savitzky-Golay (SGD), Variagdo Normal Padrdo (SNV),
Correcdo Multiplicativa de Sinal (MSC) e Correcéo do Continuo (CRR) estdo apresentados na
Figura 16.
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Figura 16. Curvas espectrais médias de REF espectral e ap6s a adi¢do dos pré-processamentos
espectrais de ABS, SMO, SGD, SNV, MSC, CRR.

4.5. Modelagem

4.5.1. Identificacdo de outliers

Os outliers sdo os dados que apresentam comportamento andémalo em relagcdo aos
demais da série, de forma que podem prejudicar a interpretacdo de resultados obtidos por
algoritmos e analises de dados, como é o caso das analises multivariadas. Para esse estudo, as
amostras foram identificadas como outliers a partir de um primeiro teste de modelagem PLSR,
pela técnica de leave-one-out, com os dados brutos de reflectancia vis-NIR e as concentracfes
de C, N e P das amostras de terra de 2014 do médulo. A partir de entéo, os dados mais afastados
a correlagdo linear gerada foram retirados dos conjuntos de dados de treinamento e validacdo,
conforme pode ser visto em vermelho na Figura 17. Esses novos conjuntos (sem outliers) foram
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submetidos a todas as etapas posteriores de pré-processamentos espectrais e modelagem a partir
de treinamento e validagdes.

C - Treinamento C -Validacao
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/‘bhg N ’Bh'_ _ o. :.:
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Figura 17. Amostras identificadas como outliers em vermelho para o conjunto de dados de
treinamento (trei) e validacdo (val) para C e somente validacéo (val) para N e P.

Para os modelos teste de predicdo de C, foram considerados outliers 4 amostras do
conjunto de treinamento e 3 do conjunto de validacdo, o que corresponde a 4,1% do nimero
total de amostras. Para 0 modelo de N, apenas uma amostra do conjunto de validagdo foi
considerada outlier, o que representa 0,37% das amostras totais enquanto que para o modelo de

P, duas amostras do conjunto de validacéo foram consideradas outliers, representando 0,47 das
amostras totais.

4.5.2. Treinamento e validacdo dos modelos de predicdo de C
O treinamento dos modelos de predicdo de C e o nimero de componentes PLS capazes
de prever concentragdes quimicas das amostras a partir de dados espectrais com 0 menor RMSE

atribuido variou de 3 a 12 e podem ser observados graficamente em vermelho na Figura 18 e
descrito na Tabela 6.
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Figura 18. Gréaficos de componentes PLS e RMSE para os treinamentos dos modelos preditivos
de C.

Apos o treinamento dos modelos, foi gerado grafico de regresséo linear representando
a diferenca entre as concentracOes de C observadas e preditas pelo modelo, onde o modelo ideal
teria todos os pontos sobre a reta. Os graficos para os modelos de teste para dados de REF e
pré-processados (ABS, SMO, SGD, SNV, MSC, CRR) estdo na Figura 19 e dados na Tabela 6.
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Figura 19. Treinamento dos modelos de predicdo de C a partir de dados de REF, ABS, SMO,

SGD, SNV, MSC e CRR.
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Tabela 5. Pardmetros estatisticos obtidos a partir do treinamento e valida¢do dos modelos
preditivos de C, bem como o nimero de componentes PLS escolhido para modelo.

Treinamento - C

PP R2 RMSE RPIQ NC
REF 0.81 1,23 3,71 5
ABS 0,80 1,24 3,69 5
SMO 0,89 0,92 4,95 12
SGD 0,88 0,97 4,71 4
SNV 0,78 1,31 3,49 3
MSC 0,78 1,31 3,48 3
CRR 0,83 1,15 3,98 7

REF: reflectancia; ABS: absorbancia; SMO: suavizacdo; SGD: derivadas Savitzky-Golay; SNV: derivacio
normal padrdo; MSC: corre¢do multiplicativa de sinal; CRR: remocéo do continuo; R% coeficiente de
determinagdo; RMSE: raiz quadrada do erro médio; RPIQ: relacdo de desempenho para distancias
interquartis; NC: nimero de componentes PLS.

O Rz ¢ uma medida que descreve a quantidade de variabilidade nos dados que é
explicada pelo modelo de regressao ajustado. Dessa forma, quanto maior o valor de R2 obtido,
melhor o modelo nesse aspecto. Os valores de R2 para os treinamentos dos modelos preditivos
de C variaram de 0,78 a 0,89; o que indica que todos os modelos tiveram ajustes de bons a
muito bons. Comparando com o0s valores obtidos para 0 modelo com os dados de REF (sem
pré-processamento), alguns algoritmos retiraram dados importantes para 0 ajuste,
principalmente os que corrigiram a linearidade (ABS R2=0,80) e o espalhamento da luz (SNV
e MSC, ambos R?= 0,78). Por outro lado, o0 modelo SMO apresentou melhor R? (0,89),
indicando que as amostras sofreram interferéncias aleatérias, o que provocou ruidos e
consequentemente um ajuste prejudicado. Quando o SMO foi aplicado aos dados, houve um
aumento do ajuste dos modelos de predicao de 0,08%.

O RMSE representa a qualidade do ajuste de um modelo e indica o quanto as respostas
variam em torno das suas predi¢es. Dessa forma, quanto mais 0 RMSE for proximo de zero,
melhor a qualidade do ajuste. Os valores de RMSE para os treinamentos dos modelos de
predicdo de C variaram de 0,92 (SMO) a 1,31 (SNV e MSC).

O RPIQ representa o desempenho dos modelos de previsao, através do espalhamento
entre os quartis 1 e 3. Os valores de RPIQ para os treinamentos dos modelos de predicdo de C
variaram de 4,95 a 3,48 para SMO e MSC, respectivamente.

Apds o treinamento dos modelos, para saber se eles sdo capazes de predizer o ¢ em
amostras externas, ou seja, que ndo participaram do processo de treinamento, os modelos
obtidos a partir dos dados de REF e de todos os pré-tratamentos (ABS, SMO, SGD, SNV, SMO
e CRR) foram usados utilizados nos dados do conjunto de validagdo de 2014 (validagéo 1) e
em seguida para o conjunto global de dados referentes as amostras de 2013 (validacdo 2). A
validacdo 2 foi realizada com o objetivo de testar uma segunda avaliacdo desses modelos
guimiométricos para monitorar o C do solo do mddulo, de forma prética. Esses dados podem
ser encontrados na Figura 20 e na Tabela 7.

Para a validagdo 1, os valores de R? variaram de 0,65 a 0,72; sendo o menor valor obtido
para os modelos SMO e MSC e o maior para 0 modelo SGD. Para RMSE houve variacdo de
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1,57 a 1,98, para os modelos REF e CRR, respectivamente. E para os valores de RPIQ, houve
variacao entre 3,48 e 4,95; para os modelos MSC e SMO. Esses dados indicam que os modelos
para validacéo 1 apresentaram ajustes razoavelmente bons de bons.

Para a validacdo 2, os valores de R2 variaram de 0,35 a 0,43; sendo o0 menor valor obtido
para 0os modelos SMO e o maior para 0os modelos SNV e MSC. Para RMSE houve variagdo de
2,41 a 2,77, para os modelos SNV e SMO, respectivamente. Para os valores de RPIQ, houve
variacdo entre 1,37 e 1,58; para os modelos SMO e SNV. Esses modelos apresentaram baixo
potencial preditivo. Isso pode ter acontecido devido a uma transi¢do no manejo do médulo que
ocorreu nesse ano, variando as entradas e saidas de C em comparacdo com o ano de 2014.

O modelo que obteve a melhor performance foi 0 SNV, que corrige os efeitos negativos
provocados pela ndo-homogeneidade das amostras. 1sso pode ter acontecido por se trataram de
amostras coletadas em outro periodo de tempo das demais utilizadas para treinamento e
validacdo 1. Com o tempo em armazenamento, é possivel que as amostras tenham ficado nédo
homogéneas em relacdo a granulometria, com migracdo das particulas finas para o fundo.
Assim, durante a aquisic¢do de dados espectrais pode ter havido espalhamento da luz.
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Figura 20. Validacdo dos modelos preditivos de C para os dados de REF, ABS, SMO, SGD, SNV, MSC e CRR, para os anos de 2013 e 2014.



Tabela 6. Validacdes dos modelos preditivos de C para os dados de REF, ABS, SMO,
SGD, SNV, MSC, CRR para os anos de 2014 e 2013.

C - Validacéo 1 - 2014

PP R? RMSE RPIQ
REF 0,71 1,57 3,71
ABS 0,70 1,64 3,69
SMO 0,65 1,79 4,95
SGD 0,72 1,70 4,71
SNV 0,66 1,74 3,49
MCS 0,65 1,76 3,48
CRR 0,69 1,98 3,98

C - Validagéo 2 — 2013

PP R? RMSE RPIQ
REF 0,41 2,49 1,53
ABS 0,39 2,51 1,51
SMO 0,35 2,77 1,37
SGD 0,37 2,59 1,47
SNV 0,43 2,41 1,58
MSC 0,43 2,42 1,57
CRR 0,39 2,52 1,52

REF: reflectancia; ABS: absorbancia; SMO: suavizac¢do; SGD: derivadas Savitzky-Golay; SNV: derivacao
normal padrdo; MSC: corregdo multiplicativa de sinal; CRR: remog¢do do continuo; R2 coeficiente de
determinacdo; RMSE: raiz quadrada do erro médio; RPIQ: relacdo de desempenho para distancias
interquartis; NC: nimero de componentes PLS.

Comparando o modelo REF com os melhores modelos para cada parametro estatistico
avaliado em ambas as validacdes, os valores de R2, 0 RMSE e o RPIQ apresentaram pouca
diferenca entre eles. Dessa forma, em uma analise corriqueira de rotina, ou até qualitativa, para
avaliacdo do aumento ou decréscimo de C entre as areas de importacao e exportacao do médulo,
a modelagem poderia ser realizada apenas a partir dos modelos dos dados brutos de REF, sem
adicdo de ferramentas de pré-processamento espectral.

4.5.3. Treinamento e validacdo dos modelos de predicdo de N
O treinamento dos modelos de predicdo de N e o niumero de componentes PLS capazes de

prever concentracdes quimicas das amostras a partir de dados espectrais com 0 menor RMSE
atribuido variou de 5 a 20 e podem ser observados graficamente na Figura 21.
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Figura 21. Gréaficos de componentes PLS e RMSE para os treinamentos dos modelos preditivos
de N.

Em seguida, foram criados os modelos de teste para os dados brutos de reflectancia
(REF) e os pré-processados espectralmente (ABS, SMO, SGD, SNV, MSC, CRR),
apresentados na Figura 22 e descrito na Tabela 8.
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Figura 22. Treinamento dos modelos de predi¢do de N a partir de dados de REF, ABS, SMO,

SGD, SNV, MSC e CRR.
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Tabela 7. Pardmetros estatisticos obtidos a partir do treinamento e validacdo dos modelos
preditivos, bem como o numero de componentes PLS escolhido e utilizado para a
predicdo de C, N e P do solo.

Treinamento — N

PP R? RMSE RPIQ NC
REF 0,80 0,13 2,26 9
ABS 0,88 0,10 2,89 13
SMO 0,81 0,13 2,28 13
SGD 0,99 0,03 8,68 13
SNV 0,99 0,03 9,34 19
MSC 0,99 0,03 9,99 19
CRR 0,73 0,15 1,99 5

REF: Reflectdncia; ABS: Absorbancia; SMO: Suavizacdo; SGD: Derivadas Savitzky-Golay; SNV:
Derivacdo normal padrdo; MSC: Corre¢do multiplicativa de sinal; R2: Coeficiente de determinacdo; RMSE:
Raiz quadrada do erro médio; RP1Q: Relacdo de desempenho para distancias interquartis; NC: nimero de
componentes PLSR.

Os valores de R? para os treinamentos dos modelos preditivos de N variaram de 0,73
(CRR) a 0,99 (SGD, SNV e MSC); o que indica que todos os modelos tiveram ajustes de bons
a excelentes. Os valores de RMSE variaram de 0,03 (SGD, SNV e MSC) a 0,15 (CRR). Os
valores de RPIQ variaram de 1,99 (CRR) a 9,99 (MSC).

Embora ndo seja regra, nutrientes como N, Ca e Mg, os quais apresentam fontes
minerais com atividade espectral na regido vis-NIR costumam apresentar determinacGes mais
assertivas (BEN-DOR et al 1997).

Para a validacdo 1, os valores de R2 variaram de 0,65 a 0,81 para os modelos de SGD e
REF, respectivamente. Os valores de RMSE variaram de 0,13 (REF e SMO) a 0,18 (SGD)
enguanto que o RPIQ variou de 2,39 (SGD) a 3,34 (REF).

Para a validacéo 2, os valores de R? variaram de 0,43 (CRR) a 0,61 (SMO); os valores
de RMSE variaram de 0,20 (ABS e SMO) a 0,23 (CRR) enguanto que o RPIQ variou de 1,70
(CRR) a 4,95 (ABS).
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Tabela 9. Validagdes dos modelos preditivos de N para os dados de REF, ABS, SMO,

SGD, SNV, MSC, CRR para os anos de 2014 e 2013.

N - Validagdo — 2014

PP R? RMSE RPIQ
REF 0,81 0,13 3,34
ABS 0,77 0,14 3,01
SMO 0,80 0,13 3,28
SGD 0,65 0,18 2,39
SNV 0,75 0,15 2,92
MCS 0,75 0,15 2,84
CRR 0,71 0,16 2,70

N - Validagdo — 2013

PP R2 RMSE RPIQ
REF 0,56 0,22 1,85
ABS 0,58 0,20 1,98
SMO 0,61 0,20 1,95
SGD 0,56 0,21 1,93
SNV 0,53 0,22 1,82
MSC 0,59 0,21 1,95
CRR 0,43 0,23 1,70

REF: Reflectancia; ABS: Absorbancia; SMO: Suavizagdo; SGD: Derivadas Savitzky-Golay; SNV:
Derivacdo normal padrdo; MSC: Correcdo multiplicativa de sinal; Rz Coeficiente de determinacdo; RMSE:
Raiz quadrada do erro médio; RP1Q: Relacdo de desempenho para distancias interquartis.

4.5.4. Treinamento e validacdo dos modelos de predicédo de P

O treinamento dos modelos de predicdo de P e 0 nimero de componentes PLS capazes
de prever concentracdes quimicas das amostras a partir de dados espectrais com o menor RMSE
atribuido, variou de 5 a 19 e podem ser observados graficamente em vermelho na Figura 24 e

descritos, junto com os modelos na Tabela 10.
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Tabela 10. Parametros estatisticos obtidos a partir do treinamento e validacdo dos
modelos de predi¢do das concentragdes de P do solo.

Treinamento - P

PP R? RMSE RPIQ NC
REF 0,95 12,37 4,90 17
ABS 0,59 34,35 1,76 10
SMO 0,62 33,04 1,83 13
SGD 0,70 29,71 2,04 5
SNV 0,99 5,93 10,00 20
MSC 0,98 6,81 8,89 19
CRR 0,61 33,63 1,80 9

REF: Reflectancia; ABS: Absorbancia; SMO: Suavizacdo; SGD: Derivadas Savitzky-Golay; SNV:
Derivacdo normal padrdo; MSC: Correcdo multiplicativa de sinal; CRR: corre¢do do continuo; Rz
Coeficiente de determinacdo; RMSE: Raiz quadrada do erro médio; RPIQ: Relacdo de desempenho para
distancias interquartis; NC: nimero de componentes PLSR.

Para os treinamentos dos modelos de predicdo de P os valores de R2 apresentaram
variacdo de 0,59 (ABS) a 0,99 (SNV), o que indica que o ajuste dos modelos também variou
entre razoavelmente bons a excelentes. Os valores de RMSE variaram de 5,93 (SNV) a 34,35
(ABS). Os valores de RPIQ variaram de 1,76 (CRR) a 10,00 (MSC).

Apesar de nutrientes como o P apresntarem pouca atividade direta nos espectros de solo,
0s bons modelos de predicdo gerados através da sua correlagdo com outros parametros do solo
(IZNAGA et al. 2014). Como grande parte de absorbancia desse solo provavelmente se deu
gracas a presenca de MOS, essa correlagdo ficou mais evidente, em contraste com outros
estudos que obtiveram ajustes de modelos de predicdo sem qualidade.

Para a validacdo 1, os valores de R? variaram de 0,50 a 0,60 para os modelos de ABS e
SMO, respectivamente. Os valores de RMSE variaram de 32,21 (MSC) a 36,96 (ABS),
enquanto o RPIQ variou de 2,33 (ABS) a 2,45 (MSC).

Para a validacédo 2, os valores de R2 variaram de 0,43 (SGD) a 0,56 (SNV); os valores
de RMSE variaram de 37,15 (SNV) a 55,02 (MSC) enquanto que o RPIQ variou de 1,48 (MSC)
a 2,20 (SNV).
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Tabela 11. Validag6es dos modelos preditivos de P para os dados de REF, ABS, SMO,
SGD, SNV, MSC, CRR para os anos de 2014 e 2013.

P - Validagdo — 2014

PP R? RMSE RPIQ
REF 0,53 35,84 2,40
ABS 0,50 36,96 2,33
SMO 0,60 32,93 2,62
SGD 0,51 36,08 2,39
SNV 0,57 34,06 2,53
MCS 0,54 32,21 2,45
CRR 0,56 35,49 2,43

P - Validacgdo — 2013

PP R2 RMSE RPIQ
REF 0,52 39,29 2,08
ABS 0,47 40,22 2,03
SMO 0,49 40,55 2,01
SGD 0,43 41,60 1,96
SNV 0,56 37,12 2,20
MSC 0,53 55,02 1,48
CRR 0,50 39,12 2,08

REF: reflectdncia; ABS: absorbancia; SMO: suavizac¢do; SGD: derivadas Savitzky-Golay; SNV: deriva¢do
normal padrdo; MSC: corre¢do multiplicativa de sinal; CRR: corre¢do do continuo; R Coeficiente de
determinacdo; RMSE: Raiz quadrada do erro médio; RPIQ: Relacdo de desempenho para distancias
interquartis.



5. CONCLUSOES

As técnicas de espectroscopia de reflectancia na regido do visivel e infravermelho
proximo (vis-NIR) se mostraram eficazes para a analise qualitativa e para a predicdo das
concentracdes de C, N e P num Planossolo Héaplico, situado em Seropédica (RJ). Apenas
utilizando os dados espectrais de reflectancia (REF) pode-se fazer o monitoramento do mddulo
de producdo organica de hortalicas, de uma forma rapida e acurada de avaliacdo das areas de
importacdo e exportacdo de matéria orgénica do solo e, consequente tomada de decisdo em
relacdo ao manejo a ser implantado ou modificado. Os pré-processamentos que melhor
otimizaram as predi¢des de C, N e P no Planossolo Héaplico, que possui elevado contetdo de
areia, sdo os que eliminam o espalhamento da luz (MSC e SNV). Isso se deve, provavelmente,
a alta reflectancia do quartzo, presente na fracdo areia desse solo.

Finalizando, através desse estudo ficou claro também que nem todas as amostras de terra
coletadas para a predicdo dos atributos avaliados sdo necessarias para se obter uma boa
acurécia, ja que parte das amostras foi perdida e ainda assim os modelos apresentaram bom
ajuste na predicédo dos teores de C, N e P no Planossolo Haplico.
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