Please use this identifier to cite or link to this item:
http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/23509Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Souza, Bruna Caroline Esteves de | - |
| dc.date.accessioned | 2025-10-28T13:21:19Z | - |
| dc.date.available | 2025-10-28T13:21:19Z | - |
| dc.date.issued | 2024-09-16 | - |
| dc.identifier.citation | SOUZa, Bruna Caroline Esteves de. Planejamento, Síntese e Avaliação Farmacológica de Bases de Mannich Derivadas da Lausona: Potenciais Agentes Antimaláricos e Anticolinesterásicos. 2024. 297 f. Dissertação (Mestrado em Química) -Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2024. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/23509 | - |
| dc.description.abstract | Esta dissertação aborda duas doenças: malária e doença de Alzheimer. A malária, causada por protozoários Plasmodium, é um grave problema de saúde devido à crescente resistência dos parasitas aos antimaláricos, como atovaquona, que inibe o complexo III da cadeia respiratória. A doença de Alzheimer é uma neurodegeneração que compromete a cognição mental e é tratada com fármacos que aumentam os níveis de neurotransmissores, como donepezila, um inibidor de colinesterase que eleva os níveis de acetilcolina. A lausona, uma naftoquinona extraída das plantas Lawsonia inermis (hena) e Eichhornia crassipes (jacinto-de- água), usada na reação multicomponente de Mannich para sintetizar bases de Mannich com potencial antimalárico e inibidor de colinesterase, abrindo novas perspectivas para o desenvolvimento de fármacos por uma abordagem sintética simples e econômica. A atovaquona e a donepezila foram referências para planejar 16 bases de Mannich derivadas da lausona, com base em estudos in silico de docking. Três estratégias de planejamento foram utilizadas: bioisosterismo, homologação e simplificação molecular. As bases de Mannich foram divididas em duas séries: monoaminas alifáticas não cíclicas (BS1 - BS11) e diaminas bicíclicas (BS12 - BS16). A série de diaminas bicíclicas (BS12 - BS16) apresenta semelhança com aminonaftoquinonas bioissteras da donepezila, mantendo a subunidade benzilpiperidina e substituindo o esqueleto central por naftoquinona. Monoaminas alifáticas não cíclicas (BS3, BS9 e BS10) também se assemelham a base de Mannich avaliadas para inibição de colinesterase. As bases de Mannich (BS1 - BS16) foram sintetizadas pela reação multicomponente de Mannich com a lausona, três aldeídos (formaldeído, acetaldeído e benzaldeído) e aminas distintas, seguida de purificação por recristalização, com rendimentos de 30 a 90%. Para melhorar a solubilidade, foram convertidas em cloridratos, com pureza confirmada por Cromatografia Líquida de Alta Eficiência (CLAE), resultando em monocloridratos BS1.HCl – BS12.HCl (LaDMol365 – LaDMol377) e dicloridrato BS13.2HCl (LaDMol377). As estruturas foram confirmadas por Espectrometria de Massas e RMN (1H e 13C). Estudos in sílico das propriedades farmacocinéticas foram realizados. A atividade antimalárica de BS1.HCl – BS12.HCl (LaDMol365 – LaDMol377) está em andamento, com os resultados a serem publicados. Ensaios de inibição de colinesterase (AChE e BChE) em concentração única de 30 μM mostraram que BS13.2HCl (LaDMol377) e BS9.HCl (LaDMol374) apresentaram perfil promissor para inibição de AChE, incentivando a continuidade dos estudos enzimáticos. | pt_BR |
| dc.description.sponsorship | Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Lawsonia inermis | pt_BR |
| dc.subject | reação de Mannich | pt_BR |
| dc.subject | avaliação farmacológica | pt_BR |
| dc.subject | Lawsonia inermis | pt_BR |
| dc.subject | Mannich reaction | pt_BR |
| dc.subject | pharmacological evaluation | pt_BR |
| dc.title | Planejamento, síntese e avaliação farmacológica de bases de mannich derivadas da lausona: potenciais agentes antimaláricos e anticolinesterásicos. | pt_BR |
| dc.title.alternative | Design, synthesis and pharmacological evaluation of mannich bases derived from lausone: potential antimalarial and anticholinesterase agents. | en |
| dc.type | Dissertação | pt_BR |
| dc.description.abstractOther | This dissertation addresses two diseases: malaria and Alzheimer's disease. Malaria, caused by Plasmodium protozoa, is a serious health problem due to the increasing resistance of the parasites to antimalarials, such as atovaquone, which inhibits complex III of the respiratory chain. Alzheimer's disease is a neurodegeneration that compromises mental cognition and is treated with drugs that increase neurotransmitter levels, such as donepezil, a cholinesterase inhibitor that increases acetylcholine levels. Lausone, a naphthoquinone extracted from the plants Lawsonia inermis (henna) and Eichhornia crassipes (water hyacinth), is used in the multicomponent Mannich reaction to synthesize Mannich bases with antimalarial and cholinesterase inhibitor potential, opening new perspectives for the development of drugs through a simple and economical synthetic approach. Atovaquone and donepezil were references for the design of 16 Mannich bases derived from lausanne, based on in silico docking studies. Three design strategies were used: bioisosterism, homologation and molecular simplification. The Mannich bases were divided into two series: non-cyclic aliphatic monoamines (BS1 - BS11) and bicyclic diamines (BS12 - BS16). The series of bicyclic diamines (BS12 - BS16) shows similarity to the aminonaphthoquinone bioisosteres of donepezil, maintaining the benzylpiperidine subunit and replacing the central skeleton with naphthoquinone. Non-cyclic aliphatic monoamines (BS3, BS9 and BS10) also resemble the Mannich bases evaluated for cholinesterase inhibition. Mannich bases (BS1 - BS16) were synthesized by the multicomponent Mannich reaction with lausone, three aldehydes (formaldehyde, acetaldehyde and benzaldehyde) and different amines, followed by purification by recrystallization, with yields of 30 to 90%. To improve solubility, they were converted into hydrochlorides, with purity confirmed by High Performance Liquid Chromatography (HPLC), resulting in monohydrochlorides BS1.HCl - BS12.HCl (LaDMol365 - LaDMol377) and dihydrochloride BS13.2HCl (LaDMol377). The structures were confirmed by Mass Spectrometry and NMR (1H and 13C). In silico studies of pharmacokinetic properties were performed. The antimalarial activity of BS1.HCl – BS12.HCl (LaDMol365 – LaDMol377) is ongoing, with results to be published. Cholinesterase inhibition assays (AChE and BChE) at a single concentration of 30 μM showed that BS13.2HCl (LaDMol377) and BS9.HCl (LaDMol374) presented a promising profile for AChE inhibition, encouraging the continuation of enzymatic studies. | en |
| dc.contributor.advisor1 | Kümmerle, Arthur Eugen | - |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5598000938584486 | pt_BR |
| dc.contributor.advisor-co1 | Graebin, Cedric Stephan | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0003-1410-1227 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/4900857097448760 | pt_BR |
| dc.contributor.referee1 | Kümmerle, Arthur Eugen | - |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/5598000938584486 | pt_BR |
| dc.contributor.referee2 | Suzart, Luciano Ramos | - |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/9433715032329261 | pt_BR |
| dc.contributor.referee3 | Vieira, Daniel Pais Pires | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/8564684974338964 | pt_BR |
| dc.creator.Lattes | - | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Química | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Química | pt_BR |
| dc.relation.references | ABUBAKAR, M. B.; SANUSI, K. O.; Ugusman, A. et al. Alzheimer’s Disease: An Update and Insights Into Pathophysiology. Frontiers in Aging Neuroscience, v. 14, p. 742408, 2022. ADI. World Alzheimer Report 2022 – Life after diagnosis: Navigating treatment, care and support. 2022. Disponível em: <https://www.alzint.org/u/World-Alzheimer-Report- 2022.pdf>. AGUIAR, C. E. R.; MEDEIROS, H. I.; DA SILVA, B. B. et al. O estado da arte de derivados da Lausona. Brazilian Journal of Development, v. 6, n. 8, p. 57998 – 58006, 2020. AL NASR, I.; JENTZCH, J.; WINTER, I. et al. Antiparasitic activities of new lawsone Mannich bases. Archiv der Pharmazie, v. 352, n. 11, p. 1900128, 2019. ALLOCHIO FILHO, J. F.; LEMOS, B. C. L.; DE SOUZA, A. S. et al. Multicomponent Mannich reactions: General aspects, methodologies and applications. Tetrahedron, v. 73, n. 50, p. 6977 – 7004, 2017. ALLOCHIO FILHO, J. F.; ROLDI, L. L.; DELARMELINA, M.; et al. Synthesis, in vitro Antifungal Activity and Molecular Modeling Studies of New Mannich Bases Derived from Lawsone. Journal of the Brazilian Chemical Society, v. 27, n. 11, p. 2127 – 2140, 2016. ALZHEIMER’S ASSOCIATION. 2023 Alzheimer’s disease facts and figures. v. 19, n. 4, p. 1598 – 1695, 2023. ASADI, B.; MOHAMMADPOOR-BALTORK; TANGESTANINEJAD, s. et al. Synthesis and characterization of Bi (III) immobilized on triazine dendrimer-stabilized magnetic nanoparticles: a reusable catalyst for the synthesis of aminonaphthoquinones and bis- aminonaphthoquinones. New Journal of Chemistry, v. 40, n. 7, p. 6171 – 6184, 2016. ARMSTRONG, R. Risk factors for Alzheimer’s disease. Folia Neuropathologica, v. 57, n. 2, 2019. AYAZ, M. et al. Enantioenriched Naphthoquinone Mannich Bases by Organocatalyzed Nucleophilic Additions to in situ Formed Imines. Synlett, v. 10, p. 1489 – 1492, 2010. BABU, P. D.; SUBHASREE, R. S. Antimicrobial Activities of Lawsonia inermis - A Review. Academic Journal of Plant Sciences, v. 2, n. 4, p. 231 – 232, 2015. BARAMEE, A.; COPPIN, A.; MORTUAIRE, M. et al. Synthesis and in vitro activities of ferrocenic aminohydroxynaphthoquinones against Toxoplasma gondii and Plasmodium falciparum. Bioorganic & Medicinal Chemistry, v. 14, n. 5, p. 1294 – 1302, 2006. 126 BARREIRO, E. J.; FRAGA, C. A. M. Planejamento racional baseado no mecanismo de ação: Fármacos inteligentes. In: BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: as bases moleculares de ação dos fármacos. P (171 - 223). 3. ed. Porto Alegre: Artmed, 2015a. BARREIRO, E. J.; FRAGA, C. A. M. A importância do mecanismo molecular de ação dos fármacos. In: BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: as bases moleculares de ação dos fármacos. p (255 - 283). 3. ed. Porto Alegre: Artmed, 2015b. BARREIRO, E. J.; FRAGA, C. A. M. Bioisosterismo como estratégia de planejamento, desenho, modificação molecular e otimização de ligantes e compostos-protótipos. In: BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: as bases moleculares de ação dos fármacos. p (347 - 405). 3. ed. Porto Alegre: Artmed, 2015c. BARREIRO, E. J.; FRAGA, C. A. M. Simplificação Molecular como estratégia de modificação molecular e o processo de otimização de compostos-protótipos. In: BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: as bases moleculares de ação dos fármacos. p (447 - 480). 3. ed. Porto Alegre: Artmed, 2015d. BARREIRO, E. J.; FRAGA, C. A. M. Estratégias modernas para a identificação de novos candidatos a protótipos, hits e ligantes. In: BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: as bases moleculares da ação dos fármacos. p (477 - 498). 3. ed. Porto Alegre: Artmed, 2015e. BARREIRO, E. J.; FRAGA, C. A. M. Aspectos gerais da ação dos fármacos. In: BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: as bases moleculares da ação dos fármacos. p (1 - 42). 3. ed. Porto Alegre: Artmed, 2015f. BAYAT, M.; SAENI, V.; MASOUMI, M.; et al. One-Pot Synthesis of Dihydroxyindeno[1,2- d]Imidazoles and Naphthoquinone Substituted Indandione and Oxindole Derivatives. Polycyclic Aromatic Compounds, v. 43, n. 2, p. 1693 – 1705, 2023. BIRTH, D.; KAO, W.-C.; HUNTE, C. Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nature communications, v. 5, n. 1, p. 1 – 11, 2014. BOLOGNESI, M. L.; ANDRISANO, V.; BARTOLINI, M. et al. Heterocyclic inhibitors of AChE acylation and peripheral sites. Il Farmaco, v. 60, n. 6–7, p. 465–473, 2005. BORADE, A. S.; KALE, B. N.; SHETE, R. V. A phytopharmacological review on Lawsonia inermis (Linn.). International Journal of Pharmacy & Life Sciences, v. 2, n. 1, p. 536 – 541, 2011. BORGES, A. A.; DE SOUZA, M. P.; DA FONSECA, A. C. C. et al. Chemoselective Synthesis of Mannich Adducts from 1,4-Naphthoquinones and Profile as Autophagic Inducers in Oral Squamous Cell Carcinoma. Molecules, v. 28, n. 1, p. 309, 2022. BORGES, N. M. Similaridade, docking e dinâmica molecular : combinação de estratégias na busca de novos inibidores da hAChE. Tese (Doutorado em Física) -Brasília: Universidade de Brasília, 2017. 127 BOURNE, Y. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. The EMBO Journal, v. 22, n. 1, p. 1–12, 2003. BRANDÃO, P.; BURKE, A. J.; PIÑEIRO, M. Reações Multicomponente – Uma Ferramenta Valiosa na Descoberta e Produção de Fármacos. Boletim da Sociedade Portuguesa de Química, p. 1 – 17, 2020. BRYSON, H. M.; BENFIELD, P. Donepezil: Drugs & Aging, v. 10, n. 3, p. 234 – 239, 1997. CAHYANA, A. H.; LIANDI, A. R.; ROMDONI, Y. et al. Green synthesis of CuFe2O4 nanoparticles mediated by Morus alba L. leaf extract: Crystal structure, grain morphology, particle size, magnetic and catalytic properties in Mannich reaction. Ceramics International, v. 47, n. 15, p. 21373 – 21380, 2021. CALIL, F. A.; DAVID, J. S.; CHIAPPETTA, E. R. C.; et al. Ligand-based design, synthesis and biochemical evaluation of potent and selective inhibitors of Schistosoma mansoni dihydroorotate dehydrogenase. European Journal of Medicinal Chemistry, v. 167, p. 357 – 366, 2019. CAPPER, M. J.; O'NEILL, P. M.; FISHER, N. et al. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1. Proceedings of the National Academy of Sciences, v. 112, n. 3, p. 755 – 760, 2015. CAREY, F. A.; SUNDBERG, R. J. Reactions of Carbon Nucleophiles with Carbonyl Compounds. In: CAREY, F. A.; SUNDBERG, R. J. Advanced Organic Chemistry - Part B: Reactions and Synthesis. 3. ed. University of Virginia: Springer, 2007a. CAREY, F. A.; SUNDBERG, R. J. Structural Effects on Stability and Reactivity. In: CAREY, F. A.; SUNDBERG, R. J. Advanced Organic Chemistry - Part A: Structure and Mechanisms. p (300 - 472). 3. ed. University of Virginia: Springer, 2007b. CASTRO, R. N.; SALGUEIRO, F. B. Comparação entre a composição química e capacidade antioxidante de diferentes extratos de própolis verde. Química Nova, v. 39, n. 10, p. 1192– 1199, 2016. CHE, F.; WANG, Y.; SHEN, T.; et al. Synthesis of 2-(3-amino-2-oxoindolin-3-yl)-3- hydroxynaphthalene-1,4-dione derivatives via a one-pot, three-component reaction under catalyst-free conditions. Comptes Rendus Chimie, v. 18, n. 6, p. 607 – 610, 2015. CLAYDEN, J.; GREEVES, N.; WARREN, S. Acidity, basicity, and pKa. In: CLAYDEN, J.; GREEVES, N.; WARREN, S. Organic Chemistry. p (181 - 208). 2. ed. Oxford University Press, USA, 2012a. CLAYDEN, J.; GREEVES, N.; WARREN, S. Deslocalization and conjugation. In: CLAYDEN, J.; GREEVES, N.; WARREN, S. Organic Chemistry. p (151 - 180). 2. ed. Oxford University Press, USA, 2012b. COLEMAN, M. D. Human Drug Metabolism. p (37 - 246). 3. ed. Hoboken, NJ: Wiley- Blackwell, 2020. 128 CONINCKX, A. Malária: limitações das terapêuticas atuais, validação de novos alvos terapêuticos e descoberta de novos fármacos. Dissertação (Mestrado em Ciências Farmáceuticas) - Universidade do Algarve, 2017. CONTI FILHO, C. E.; LOSS, L. B.; MARCOLONG-PEREIRA, C. et al. Advances in Alzheimer’s disease’s pharmacological treatment. Frontiers in Pharmacology, v. 14, 2023. CUMMINGS, J. et al. Lecanemab: Appropriate Use Recommendations. The Journal of Prevention of Alzheimer’s Disease, v. 10, n. 3, p. 362–377, 2023. COSTACURTA, J. S. D. Caracterização bioquímica, biofísica e estudos inibitórios da enzima diidroorotato desidrogenase de Schistosoma mansoni. Dissertação (Mestrado em Química e Física Biológica)—Faculdade de Ciências Farmacêuticas de Riberão Preto: Universidade de São Paulo, 2014. COSTA, P.; FERREIRA, V.; ESTEVS, P.; VASCONCELOS, M. Conceitos de ácidez e basicidade. In: COSTA, P.; FERREIRA, V.; ESTEVS, P.; VASCONCELOS, M. Ácidos e bases em Química Orgânica. p (19 - 42). Sociedade Brasileira de Química (SBQ). Porto Alegre. Bookman, 2005. COULADOUROS, E. A.; STRONGILOS, A. T. Product Class 3: Naphtho-1,4-quinones. Science of Synthesis, v. 28, p. 217 – 322, 2006. CRUZ, J. N.; DA SILVA, L. B.; SOUSA FILHO, J. S. et al. Desenvolvimento de Novos Inibidores da Enzima Diidroorotato Desidrogenase (DHODH) de Leishmania sp. Research, Society and Development, v. 10, n. 16, p. e18101623087–e18101623087, 2021. DA COSTA, D. O.; SALGADO, S. D.; DA SILVA, G. B.; VARGAS, M. D. Síntese de novos ligantes 2-(aminometil)naftoquinônicos com potencial atividade antineoplásica. Sociedade Brasileira de Química (SBQ), 2011. Disponível em: <http://sec.sbq.org.br/cdrom/34ra/resumos/T1250-1.pdf>. Acesso em: 22 fev. 2023. DA SILVA, C. C.; PAIVA, R. O.; DA COSTA, G. L. et al. Atividade antibacteriana de novas 2-Amino-1,4-Naftoquinonas. Brazilian Journal of Development, v. 7, n. 6, p. 54215 – 54229, 2021. DA SILVA, G. B.; NEVES, A. P.; VARGAS, M. D. et al. New insights into 3- (aminomethyl)naphthoquinones: Evaluation of cytotoxicity, electrochemical behavior and search for structure–activity correlation. Bioorganic & Medicinal Chemistry Letters, v. 26, n. 15, p. 3537 – 3542, 2016. DA SILVA, M. N.; FERREIRA, V. F.; DE SOUZA, M. C. B. V. Um panorama atual da química e da farmacologia de naftoquinonas, com ênfase na β-lapachona e derivados. Química Nova, v. 26, n. 3, p. 407 – 416, 2003. DABIRI, M.; TISSEH, Z. N.; BAZGIR, A. Synthesis of fluorescent hydroxyl naphthalene-1,4- dione derivatives by a three-component reaction in water. Dyes and Pigments, v. 89, n. 1, p. 63 – 69, 2011. DALGLIESH, C. E. Naphthoquinone Antimalarials. Mannich Bases Derived from Lawsone. Journal of the American Chemical Society, v. 71, n. 5, p. 1697 – 1702, 1949. 129 DALOEE, T. S.; BEHBAHANI, F. K.; MARANDI, G. B. L-Proline as a Recyclable Organocatalyst for the Preparation of Hydroxy‐Substituted Naphthalene‐1,4‐diones. Russian Journal of Organic Chemistry, v. 58, n. 9, p. 1336 – 1340, 2022. DASHTEH, M.; SAFAIEE, M.; BAGHERY, S. et al. Application of cobalt phthalocyanine as a nanostructured catalyst in the synthesis of biological henna-based compounds: Safaiee et al. Applied Organometallic Chemistry, v. 33, n. 4, p. e4690, 2019. DAVOUDVANDI, R.; NAIMI-JAMAL, M. R.; PANAHI, L. CMC Catalyzed Multicomponent Mannich Reaction for Synthesis of Lawsone Family Pigments. International Electronic Conference on Synthetic Organic Chemistry, n. 16, p. 1 – 5, 2016. DE SOUZA, N. B.; DE ANDRADE, P. M.; CARNEIRO, P, F. et al. Blood shizonticidal activities of phenazines and naphthoquinoidal compounds against Plasmodium falciparum in vitro and in mice malaria studies. Memórias do Instituto Oswaldo Cruz, v. 109, n. 5, p. 546 – 552, 2014. DOOLEY, M.; LAMB, H. M. Donepezil. Drugs & Aging, v. 16, n. 3, p. 199 – 226, 2000. DUBOVTSEV, A. YU.; DMITRIEV, M. V.; MASLIVET, A. N. Two Stages in the Spiro Heterocyclization of 1H-Pyrrole-2,3-dione with a Carbocyclic Enol. Russian Journal of Organic Chemistry, v. 55, n. 3, p. 406 – 408, 2019. DUFFY, P. E.; GORRES, J. P.; HEALY, S. A.; FRIED, M. Malaria vaccines: a new era of prevention and control. Nature Reviews Microbiology, v. 22, n. 12, p. 756–772, 2024. ELLMAN, G. L.; COURTNEY, K. D.; ANDRES, V.; FEATHERSTONE, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, v. 7, n. 2, p. 88–95, 1961. FERREIRA, S. B.; GONZAGA, D. T.; SANTOS, W. C.; et al. β-Lapachona: Sua importância em Química Medicinal e modificações estruturais. Revista Virtual de Química, v. 2, n. 2, p. 140 – 160, 2010. FERREIRA, V. F.; FERREIRA, S. B.; DA SILVA, F. C. Strategies for the synthesis of bioactive pyran naphthoquinones. Organic & Biomolecular Chemistry, v. 8, n. 21, p. 4793 – 4802, 2010. FIKADU, M.; ASHENAFI, E. Malaria: An Overview. Infection and Drug Resistance, v. 16, p. 3339–3347, 2023. FIOROT, R. G.; ALLOCHIO FILHO, J. F.; PEREIRA, T. M. C. et al. A simple and convenient method for synthesis of new aminonaphthoquinones derived from lawsone by catalytic multicomponent Mannich reaction. Tetrahedron Letters, v. 55, n. 31, p. 4373 – 4377, 2014. FISH, P. V.; STEADMAN, D.; BAYLE, E.; WHITING, P. New approaches for the treatment of Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters, v. 29, n. 2, p. 125 – 133, 2019. 130 FOREZI, L. DA S. M. Busca por Novos Complexos Ditópicos com Potencial Atividade Citotóxica. Revista Virtual de Química, v. 2, n. 4, p. 227 – 230, 2010. GAO, X.; WEN, X.; ESSER, L. et al. Structural Basis for the Quinone Reduction in the bc1 Complex: A Comparative Analysis of Crystal Structures of Mitochondrial Cytochrome bc1 with Bound Substrate and Inhibitors at the Qi Site. Biochemistry, v. 42, n. 30, p. 9067 – 9080, 2003. GARCIA, K. K. S.; SOREMEKUN, S.; ABRAHÃO, A. A. et al. Is Brazil reaching malaria elimination? A time series analysis of malaria cases from 2011 to 2023. PLOS Global Public Health, v. 4, n. 1, p. e0002845, 2024. GAZIZOV, A. S.; SMOLOB, A.; KUZNETSO, E.; et al. The Highly Regioselective Synthesis of Novel Imidazolidin-2-Ones via the Intramolecular Cyclization/Electrophilic Substitution of Urea Derivatives and the Evaluation of Their Anticancer Activity. Molecules, v. 26, n. 15, p. 4432, 2021. GEISLER, H.; WESTERMAYR, J.; CSEH, K. et al. Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies. Inorganic Chemistry, v. 60, n. 13, p. 9805 – 9819, 2021. GOUDA, M. A. Synthesis and Antioxidant Evaluation of Some New Pyrazolopyridine Derivatives. Archiv der Pharmazie, v. 345, n. 2, p. 155 – 162, 2012. GOUDA, M. A.; BERGHOT, M. A.; ABD EL-GHANI, G. E.; KHALIL, A. E. -G. M Synthesis of Some Novel 4‐(Furan‐2‐yl)‐5,6‐dimethylpyridines. Journal of Heterocyclic Chemistry, v. 55, n. 8, p. 1935 – 1941, 2018. GOUDA, M. A.; ELDIEN, H.; GIRGES, M. BERGHOT, M. Synthesis and Antioxidant Activity of Novel Series of Naphthoquinone Derivatives Attached to Benzothiophene Moiety. Medicinal Chemistry, v. 03, n. 02, p. 2228 – 232, 2013. GOUDA, M. A.; SHERIF, Y. E. S.; ELSHERBINI, M. Synthesis, Anti-Inflammatory, and Analgesic Evaluation of Some 2-Amino-5-Selenothiazoles. Phosphorus, Sulfur and Silicon and the Related Elements, v. 189, n. 11, p. 1633 – 1643, 2014. GRAEBIN, C. S.; RIBEIRO, F. V.; ROGÉRIO, K. R.; KUMMERLE, A. E. et al. Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review. Current Organic Synthesis, v. 16, n. 6, p. 855 – 899, 2019. GUIDO, R. V. C.; ANDRICOPULO, A. D. Modelagem Molecular de Fármacos. Revista Processos Químicos, p. 24–36, 2008. HAMPEL, H.; MESULAM, M. M.; CUELLO, A. C. et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain: A Journal of Neurology, v. 141, n. 7, p. 1917 – 1933, 2018. HANSEN, M.; NOURS, J.; JOHANSSON, E. et al. Inhibitor binding in a class 2 dihydroorotate dehydrogenase causes variations in the membrane-associated N-terminal domain. Protein Science, v. 13, n. 4, p. 1031 – 1042, 2004. 131 HUSSAIN, H.; KROHN, K.; AHMAD, V. U.; et al. Lapachol: an overview. Arkivoc, v. 2, n. 1, p. 145 – 171, 2007. HUSSAIN, H.; SPECHT, S.; SARITE, S. R.; HOERAUF, A.; KROHN, K. New quinoline-5,8- dione and hydroxynaphthoquinone derivatives inhibit a chloroquine resistant Plasmodium falciparum strain. European Journal of Medicinal Chemistry, v. 54, p. 936 – 942, 2012. JAYASHREE, S.; SHIVASHANKAR, K. Montmorillonite K-10 catalyzed Mannich reaction: Synthesis of aminonaphthoquinone derivatives from Lawsone. Synthetic Communications, v. 48, n. 14, p. 1805 – 1815, 2018. JING, L.; WU, G.; KANG, D. et al. Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug Discovery Today, v. 24, n. 2, p. 629 – 635, 2019. JORDÃO, A. K.; VARGAS, M. D.; PINTO, A. C. et al. Lawsone in organic synthesis. RSC Advances, v. 5, n. 83, p. 67909 – 67943, 2015. KAMAL, M.; JAWAID, T. Pharmacological activities of Lawsonia inermis L., a review. International Journal of Biomedical Research, v. 1, 2011. KAPISHNIKOV, S.; STAALSO, T.; YANG, Y. et al. Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo. Proceedings of the National Academy of Sciences, v. 116, n. 46, p. 22946–22952, 2019. KARUNAN, T.; MATHEW, N.; SRINIVASAN, L. et al. Synthesis and Macrofilaricidal Activity of Substituted 2-Hydroxy/5-Hydroxy/2-Methyl-1,4-Naphthoquinones. Drug Development Research, v. 74, n. 3, p. 216 – 226, 2013. KHODABAKHSHI, M.; ADL, A.; OLYAEI, A. Design, synthesis and antimicrobial activities of novel bis-Mannich bases derived from lawsone. Research on Chemical Intermediates, v. 49, n. 11, p. 4759 – 4770, 2023. KHORAMI, F.; SHATERIAN, H. R. Preparation of 2-amino-3-cyano-4-aryl-5,10-dioxo-5,10- dihydro-4H-benzo[g]chromene and hydroxyl naphthalene-1,4-dione derivatives. Research on Chemical Intermediates, v. 41, n. 5, p. 3171 – 3191, 2013. KHORAMI, F.; SHATERIAN, H. R. Silica-bonded propylpiperazine-N-sulfamic acid as recyclable solid acid catalyst for preparation of 2-amino-3-cyano-4-aryl-5,10-dioxo- 5,10- dihydro-4H-benzo[g]chromenes and hydroxy-substituted naphthalene-1,4-dione derivatives. Chinese Journal of Catalysis, v. 35, n. 2, p. 242 – 246, 2014. KRAFFT, M. E.; WILSON, O. A.; SHAO, Y. Y. et al. The Interrupted Pauson−Khand Reaction. Journal of the American Chemical Society, v. 118, n. 25, p. 6080 – 6081, 1996. KUMAR, R.; ALAGUMUTHU, M.; DHAYABARAN, V. Synthesis and Molecular Drug Efficacy of Indoline‐based Dihydroxy‐thiocarbamides: Inflammation Regulatory Property Unveiled over COX‐2 Inhibition, Molecular Docking, and Cytotoxicity Prospects. Journal of Heterocyclic Chemistry, v. 55, n. 7, p. 1658 – 1668, 2018. 132 KUMARI, A.; KARNATAK, M.; SINGH, D.; et al. Current scenario of artemisinin and its analogues for antimalarial activity. European Journal of Medicinal Chemistry, v. 163, p. 804 – 829, 2019. KUMARI, P.; YADAV, R.; BHARTI, R.; PARVIN, T. Regioselective synthesis of pyrimidine- fused tetrahydropyridines and pyridines by microwave-assisted one-pot reaction. Molecular Diversity, v. 24, n. 1, p. 107 – 117, 2020. LEFFLER, M. T.; HATHAWAY, R. J. Naphthoquinone Antimalarials. XIII. 2-Hydroxy-3- substituted-aminomethyl Derivatives by the Mannich Reaction. Journal of the American Chemical Society, v. 70, n. 10, p. 3222 – 3223, 1948. LEYVA, E.; LOREDO-CARRILO, S. E.; LÓPEZ, L. I. et al. Importancia química y biológica de naftoquinonas. Revisión bibliográfica. Afinidad. Journal of Chemical Engineering Theoretical and Applied Chemistry, v. 74, n. 577, 2017. LI, S.; LI, A.; TRAVERS, J. et al. Identification of Compounds for Butyrylcholinesterase Inhibition. SLAS Discovery, v. 26, n. 10, p. 1355 – 1364, 2021. LIMA, L. M. Aspectos gerais do metabolismo de fármacos. In: BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: As Bases Moleculares da Ação dos Fármacos. p (43 - 99). 3 ed. Porto Alegre: Artmed, 2015. LIMA, L. M.; FRAGA, C. A. M.; BARREIRO, E. J. O renascimento de um fármaco: talidomida. Química Nova, v. 24, n. 5, out. 2001. LIMA, N. M. F.; CORREIA, C. S.; FERRAZ, P. A. L. et al. Molluscicidal hydroxynaphthoquinones and derivatives: correlation between their redox potentials and activity against Biomphalaria glabrata. Journal of the Brazilian Chemical Society, v. 13, p. 822 – 829, 2002. LIMA, L. M.; ALVES, M. A.; DO AMARAL, D. N. Homologation: A Versatile Molecular Modification Strategy to Drug Discovery. Current Topics in Medicinal Chemistry, v. 19, n. 19, p. 1734 – 1750, 2019. LIPINSKI, C. A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery. Advanced Drug Delivery Reviews, v. 23, n. 1–3, p. 3 – 25, 1997. LIU, D.; ZHOU, S.; GAO, J. Room-Temperature Synthesis of Hydroxylnaphthalene-1,4-dione Derivative Catalyzed by Phenylphosphinic Acid. Synthetic Communications, v. 44, n. 9, p. 1286 – 1290, 2014. LIU, P.-P.; XIE, Y.; MENG, X.-Y.; KANG, J.-S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduction and Targeted Therapy, v. 4, n. 29, p. 1 – 22, 2019. LIU, Z.; ZHANG, AIHUA.; SUN, HUI. et al. Two decades of new drug discovery and development for Alzheimer’s disease. RSC Advances, v. 7, n. 10, 2017. 133 LÓPEZ, L. I.; NERY FLORES, S. D.; SILVA BELMARES, S. Y.; GALINDO, A. S. Naphthoquinones: biological properties and synthesis of lawsone and derivates - a structured review. VITAE - Revista de la faculdade de Química Farmacéutica, v. 21, n. 3, p. 248 – 258, 2014. LÓPEZ L., L. I.; LEYVA, E.; GARCÍA DE LA CRUZ, R. F. Las naftoquinonas: más que pigmentos naturales. Revista mexicana de ciencias farmacéuticas, v. 42, n. 1, p. 6 – 17, 2011. LÓPEZ-LÓPEZ, L. I.; NERY-FLORES, S. D.; SÁENZ-GALINDO, A.; DE LOERA, D. Facile synthesis of aminonaphthoquinone Mannich bases by noncatalytic multicomponent reaction. Synthetic Communications, v. 47, n. 23, p. 2247 – 2253, 2017. MACEDO, K. G. D. Estudos de SAR e QSAR para um conjunto de triazolopirimidinas inibidores da enzima diidroorotato desidrogenase de Plasmodium falciparum. Dissertação (Mestrado em Ciências Farmacêuticas) -Faculdade de Farmácia, Goiânia: Universidade Federal de Goiás, 2014. MAHAJAN, S.; KHULLAR, S.; MANDAL, S. K.; SINGH, I. P. A One-Pot, Three-Component Reaction for the Synthesis of Novel 7-Arylbenzo[c]acridine-5,6-diones. | Request PDF. Chemical Communications, v. 50, n. 70, p. 10078 – 10081, 2014. MAHAL, K.; AHMAD, A.; SCHMITT, F. et al. Improved anticancer and antiparasitic activity of new lawsone Mannich bases. European Journal of Medicinal Chemistry, v. 126, p. 421 – 431, 2017. MATHEW, N.; KARUNAN, T.; SRINIVASAN, L.; MUTHUSWAMY, K. Synthesis and screening of substituted 1,4-naphthoquinones (NPQs) as antifilarial agents. Drug Development Research, p. 188 – 196, 2010. MATOS, A. P.; SARRIA, A. L. F.; VOLANTE, A. C. Potential insecticidal activity of aminonaphthoquinone Mannich bases derived from lawsone and their copper (II) complex derivatives. Zeitschrift für Naturforschung C, v. 76, n. 3 – 4, p. 111–115, 2021. MELYASHOVA, A. S.; SMOLOBCHKIN, A.; GAZIZOV, A.; et al. Convenient synthesis of 2-(het)arylpyrrolidines via stable 1-pyrrolinium salts. Tetrahedron, v. 75, n. 47, p. 130681, 2019. MCKEAGE, K.; SCOTT, L. J. Atovaquone/Proguanil. Drugs, v. 63, n. 6, p. 597 – 623, 2003. MOLLAZEHI, F.; SHATERIAN, H. R. Design and characterization of Dendrimer of MNPs as a novel, heterogeneous and reusable nanomagnetic organometallic catalyst for one-pot synthesis of hydroxyl naphthalene-1,4-dione derivatives under solvent-free conditions. Applied Organometallic Chemistry, v. 32, n. 3, p. e4183, 2018. MORADI, L.; SADEGHI, S. H. Efficient pathway for the synthesis of amido alkyl derivatives using KCC-1/PMA immobilized on magnetic MnO2 nanowires as recyclable solid acid catalyst. Journal of Molecular Structure, v. 1274, p. 134477, 2023. MOURA, R. M. B. L. DE. Tratamentos da Doença de Alzheimer: Perspectivas e Bioética. 1. ed. São Paulo: Bookerfield, 2021. 134 NAEIMI, H.; ZARABI, M. F. One pot synthesis of aminonaphthoquinone derivatives using Cu(II) immobilized on hyperbranched polyglycerol functionalized graphene oxide as a reusable catalyst under solvent-free conditions. Tetrahedron, v. 74, n. 19, p. 2314 – 2323, 2018. NAEIMI, H.; ZARABI, M. F. Copper complex of polyglycerol anchored to graphene oxide as a recyclable nanocatalyst for sonochemical green synthesis of naphthoquinones. Canadian Journal of Chemistry, v. 97, n. 10, p. 728 – 736, 2019. NARIYA, P.; SHUKLA, F.; VYAS, H.; DEVKAR, R.; THAKORE, S. Synthesis and characterization of Mannich bases of lawsone and their anticancer activity. Synthetic Communications, v. 50, n. 11, p. 1724 – 1735, 2020. NARIYA, P.; SHUKLA, F.; VYAS, H.; DEVKAR, R.; THAKORE, S. Synthesis, characterization, DNA/BSA binding and cytotoxicity studies of Mononuclear Cu(II) and V(IV) complexes of Mannich bases derived from Lawsone. Journal of Molecular Structure, v. 1248, p. 131508, 2022. NARIYA, P.; THAKORE, S. Synthesis, characterization, DFT calculations and application of some metal complexes derived from 2-(((2-(dimethylamino)ethyl)amino)(4- nitrophenyl)methyl)-3-hydroxynaphthalene-1,4-dione. Inorganic Chemistry Communications, v. 151, p. 110651, 2023. NEVES, A. P. Síntese, caracterização e estudo da atividade farmacológica de novas 2- hidroxi-3-alquilaminonaftoquinonas e seus complexos metálicos. Dissertação (Mestrado em Química) - Niterói: Universidade Federal Fluminense, 2007. NEVES, A. P.; BARBOSA, C. C.; GRECO, S. J.; et al. Novel aminonaphthoquinone mannich bases derived from lawsone and their copper(II) complexes: synthesis, characterization and antibacterial activity. Journal of the Brazilian Chemical Society, v. 20, n. 4, p. 712 – 727, 2009. NEVES, A. P.; DA SILVA, G.; VARGAS, M. D. et al. Novel platinum(ii) complexes of 3- (aminomethyl)naphthoquinone Mannich bases: synthesis, crystal structure and cytotoxic activities. Dalton Transactions, v. 39, n. 42, p. 10203, 2010. NEVES, A. P.; VARGAS, M. D.; SOTO, C. A. et al. Novel zinc(II) and copper(II) complexes of a Mannich base derived from lawsone: Synthesis, single crystal X-ray analysis, ab initio density functional theory calculations and vibrational analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 94, p. 152 – 163, 2012. NZILA, A. The past, present and future of antifolates in the treatment of Plasmodium falciparum infection. Journal of Antimicrobial Chemotherapy, v. 57, n. 6, p. 1043–1054, 2006. OLIVEIRA, A. S. D. Síntese de derivados da lausona, carvacrol, 1- hidroxipirazol e suas atividades biológicas. Tese - Doutorado em Pós-Graduação em Química - Florianópolis: Universidade Federal de Santa Catarina, 2014a. OLIVEIRA, K. M. Complexos de rutênio contendo lapachol e lausona: síntese, caracterização e suas propriedades quimioterapêuticas, 2014b. 135 OLYAEI, A.; RAHMANI, N.; SADEGHPOUR, M.; MOHAMADI, A. One-Pot Solvent- and Catalyst-Free Synthesis of Some New Heteroarylaminonaphthoquinones from Lawsone. Letters in Organic Chemistry, v. 19, n. 4, p. 333 – 339, 2022. OLYAEI, A.; TAHERI, N.; SADEGHPOUR, M. Solvent and catalyst-free synthesis of some new aminonaphthoquinones from lawsone, ninhydrin and heteroaryl amines. Research on Chemical Intermediates, v. 47, n. 3, p. 1211 – 1219, 2021. ONU. ONU e parceiros querem eliminar malária até 2030. ONU. Nações Unidas Brasil, 2015. Disponível em: <https://brasil.un.org/pt-br/70125-onu-e-parceiros-querem-eliminar- malaria-ate-2030, https://brasil.un.org/pt-br/70125-onu-e-parceiros-querem-eliminar-malaria- ate-2030>. Acesso em: 03 jan. 2025. OSSOWSKI, T.; GOULART, M. O. F.; DE ABREU, F. C. et al. Determination of the pKa values of some biologically active and inactive hydroxyquinones. Journal of the Brazilian Chemical Society, v. 19, n. 1, p. 175 – 183, 2008. PAENGSRI, W.; LEE, V.; CHONG, W. L. et al. Synthesis, Antituberculosis Activity and Molecular Docking Studies for Novel Naphthoquinone Derivatives. International Journal of Biological Chemistry, v. 6, n. 3, p. 69 – 88, 2012. PAENGSRI, W.; BARAMEE, A. Synthesis and Evaluation of Anti-tuberculosis and Anti- cancer Activities of Hydroxynaphthoquinone Derivatives. Chiang Mai J., v. 40, n. 1, p. 70 – 76, 2013. PAENGSRI, W.; PROMSAWAN, N.; BARAMEE, A. Synthesis and Evaluation of 2-Hydroxy- 1,4-naphthoquinone Derivatives as Potent Antimalarial Agents. Chemical & Pharmaceutical Bulletin, v. 69, n. 3, p. 253 – 257, 2021. PATEL, O. P. S.; BETECK, R. M.; LEGOABE, L. J. Antimalarial application of quinones: A recent update. European Journal of Medicinal Chemistry, v. 210, p. 113084, 2021. PEREIRA, D. G. Importância do metabolismo no planejamento de fármacos. Química Nova, v. 30, n. 1, p. 171 – 177, 2007. PEREIRA, L. Mitocôndria como Alvo para avaliação de toxicidade de xenobiótico. Revista Brasileira de Toxicologia, v. 25, p. 1 – 14, 2012. PERONE, R.; ALBERTINI, C.; ULIASSI, E. et al. Turning Donepezil into a Multi-Target- Directed Ligand through a Merging Strategy. ChemMedChem, v. 16, n. 1, p. 187 – 198, 2020. POPE, C. N.; BRIMIJOIN, S. Cholinesterases and the fine line between poison and remedy. Biochemical Pharmacology, v. 153, p. 205 – 216, 2018. PONTES, A. C. F. B.; PONTES, T. P. A.; CAVALCANTE, N. G. S.; et al. Síntese, caracterização de uma base de Schiff de quitosana e complexos de cobre utilizadas como eletrodo modificado. Química Nova, v. 46, p. 336–342, 2023. 136 PRASAD, S. S.; REDDY, N. R.; BASKARAN, S. One-Pot Synthesis of Structurally Diverse Iminosugar-Based Hybrid Molecules. The Journal of Organic Chemistry, v. 83, n. 17, p. 9604 – 9618, 2018. RAJASEKHAR, K.; GOVINDARAJU, T. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease. RSC Advances, v. 8, n. 42, p. 23780 – 23804, 2018. RIBEIRO, R. C. B.; DE FREITAS, P. P.; MOREIRA, C. S.; et al. A New Strategy for the Synthesis of Nonsymmetrical 3,3’-(Aryl/alkyl-methylene)bis-2-hydroxy-1,4-naphthoquinones and Their Cytotoxic Effects in PC3 Prostate Cancer Cells. Journal of the Brazilian Chemical Society, v. 31, p. 288 – 297, 2020. RICH, P. R.; MARÉCHAL, A. The mitochondrial respiratory chain. Essays in Biochemistry, v. 47, p. 1 – 23, 2010. ROCHA, J. R. DA. Planejamento de inibidores das enzimas gliceraldeído-3-fosfato desidrogenase e diidroorotato desidrogenase de Trypanosoma cruzi. text—[s.l.] Universidade de São Paulo, 15 mar. 2010. ROGERIO, K. R.; VITÓRIO, F.; KUMMERLE, A.E.; GRAEBIN, C. S. Reações Multicomponentes: Um breve Histórico e a Versatilidade destas Reações na Síntese de Moléculas Bioativas. Revista Virtual de Química, v. 8, n. 6, p. 1934 – 1962, 2016. ROSENTHAL, P. J.; ASUA, V.; CONRAD, M. D. Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. Nature Reviews Microbiology, v. 22, n. 6, p. 373–384, 2024. ROTHSCHILD, Z. Cromatografia por Exclusão. In: COLLINS, C. H.; BRAGA, G. L.; BONATO, P. S. Introdução a métodos cromatográficos. p (96 - 115). 7. ed. Unicamp, 1997. S. SCHNEIDER, L. A critical review of cholinesterase inhibitors as a treatment modality in Alzheimer’s disease. Dialogues in Clinical Neuroscience, v. 2, n. 2, p. 111 – 128, 2000. SADEGHI, S. H.; MORADI, L. Solvent free synthesis of amidoalkyl derivatives under green and convenient conditions. Journal of heterocyclic chemistry, v. 59, n. 4, p. 695 – 703, 2022. SADEGHI, S. H.; NEAMANI, S.; MORADI, L. Immobilization of CdCl2 on filamentous silica nanoparticles as an efficient catalyst for the solvent free synthesis of some amidoalkyl derivatives. Polycyclic aromatic compounds, v. 43, n. 3, p. 1957 – 1973, 2023. SADEGHI, S. H.; YAGHOOBI, M.; GHASEMZADEH, M. A. CuFe2O4/KCC-1/PMA as an efficient and recyclable nanocatalyst for the synthesis of amidoalkyl derivatives under solvent- free condition. Journal of Organometallic Chemistry, v. 982, p. 122530, 2022. SALUJA, P.; KHURANA, J.; NIKHIL, K.; ROY, P. Task-specific ionic liquid catalyzed synthesis of novel naphthoquinone–urazole hybrids and evaluation of their antioxidant and in vitro anticancer activity. RSC Advances, v. 4, n. 65, p. 34594 – 34603, 2014. 137 SANABRIA-CASTRO, A.; ALVARADO-ECHEVERRÍA, I.; MONGE-BONILLA, C. Molecular Pathogenesis of Alzheimer’s Disease: An Update. Annals of Neurosciences, v. 24, n. 1, p. 46 – 54, 2017. SANTOS, L. H. Docagem molecular: em busca do encaixe perfeito e acessível. BIOINFO - Revista Brasileira de Bioinformática e Biologia Computacional, n. 01, 2021. SANTOS, S. R. DOS. A atual classificação do antigo gênero Tabebuia (Bignoniaceae), sob o ponto de vista da anatomia da madeira. Balduinia, n. 58, p. 10 – 24, 2017. SANTOS, V. L. DOS A.; GONSALVES, A. DE A.; ARAÚJO, C. R. M. Resgate da reação de Debus-Radziszewski: Ensino prático de reações multicomponentes na síntese da lofina. Química Nova, v. 43, n. 9, p. 1344 – 1349, 2020. SARMA, M. D. Antibacterial Activity of Lawsonia inermis : An Overview. The Beats of Natural Sciences, v. 2, n. 4, p. 1 – 6, 2015. SANT’ ANNA, C. M. R. Uma introdução à modelagem molecular aplicada à Química Medicinal. In: BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: as bases moleculares da ação dos fármacos. p (231 - 252). 3. ed. Porto Alegre: Artmed, 2015. SECRETARIA DE ESTADO DE SAÚDE DO RIO DE JANEIRO. BOLETIM EPIDEMIOLÓGICO 001/2018. Secretaria de Estado de Saúde do Rio de Janeiro, 2018. Disponível em: <http://www.riocomsaude.rj.gov.br/Publico/MostrarArquivo.aspx?C=NbOliRTXqB4%3D>. Acesso em: 21 dez. 2021. SECRETÁRIA DE VIGILÂNCIA EM SAÚDE. BOLETIM EPIDEMIOLÓGICO MALÁRIA 2021. Secretária de Vigilância em Saúde - Ministério da Saúde, 2021. Disponível em: <https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/boletins- epidemiologicos-especiais/2021/boletim_epidemiologico_especial_malaria_2021.pdf>. Acesso em: 21 dez. 2021. SELTZER, B. Donepezil: a review. Expert Opinion on Drug Metabolism & Toxicology, v. 1, n. 3, p. 527 – 536, 2005. SELTZER, B. Donepezil: an update. Expert Opinion on Pharmacotherapy, v. 8, n. 7, p. 1011 – 1023, 2007. SHAABANI, S.; NAIMI-JAMAL, M. R.; MALEKI, A. Synthesis of 2-hydroxy-1,4- naphthoquinone derivatives via a three-component reaction catalyzed by nanoporous MCM-41. Dyes and Pigments, v. 122, p. 46 – 49, 2015. SHATERIAN, H. R.; MOHAMMADNIA, M. Effective preparation of 2-amino-3-cyano-4- aryl-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromene and hydroxyl naphthalene-1,4-dione derivatives under ambient and solvent-free conditions. Journal of Molecular Liquids, v. 177, p. 353 – 360, 2013. 138 SHATERIAN, H. R.; MORADI, F. Mild preparation of hydroxyl naphthalene-1,4-dione derivatives with nano copper(II) oxide as catalyst under ambient and solvent-free conditions. Research on Chemical Intermediates, v. 41, n. 1, p. 291 – 297, 2015. SILVA, G. B.; NEVES, A. P.; VARGAS, M. D. et al. Novel 3-(aminomethyl)naphthoquinone mannich base-platinum(IV) complexes: synthesis, characterization, electrochemical and cytotoxic studies. Journal of the Brazilian Chemical Society, v. 24, n.4, p. 675 – 684, 2013. SILVA, G. B.; NEVES, A. P.; VARGAS, M. D.; FERNANDES, M. C.; MENNA-BARRETO, R. F. S.; DE CASTRO, S. L. Síntese e caracterização de novas 2- (aminometil)naftoquinonas com potencial atividade tripanocida. Sociedade Brasileira de Química (SBQ), 2011. Disponível em: <http://sec.sbq.org.br/cdrom/34ra/resumos/T3354- 1.pdf> SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. Espectrometria de RMN de Hidrogênio. In: SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. Identificação Espectrométrica de Compostos Orgánicos. p (145). 7. ed. State University of New York College of Environmental Science & Forestry: LTC - Livros Técnicos e Científicos, integrantedo do grupo GEN, 2010. SMITH, M. B.; MARCH, J. Acids and Bases. In: SMITH, M. B.; MARCH, J. March’s Advanced Organic Cheemistry Reactions, Mechanisms, and Structure. p (356 - 394). 6. ed. John Wiley & Sons, 2007a. SMITH, M. B.; MARCH, J. Carbocations, Carbanions, Free Radicals, Carbenes, and Nitrenes. In: SMITH, M. B.; MARCH, J. March’s Advanced Organic Cheemistry Reactions, Mechanisms, and Structure. p (234 - 295). 6. ed. John Wiley & Sons, 2007b. SMOLOBOCHKIN, A. V. et al. Synthesis of 2-(pyrrolidin-1-yl)pyrimidines by reactions of N- (4,4-diethoxybutyl)pyrimidin-2-amine with (hetero)aromatic C-nucleophiles. Chemistry of Heterocyclic Compounds, v. 55, n. 6, p. 523 – 528, 2019. SOARES, B. G.; DE SOUZA, N. Â.; DARIO, X. P. Técnicas de Separação e Purificação de Substâncias: Recristalização. In: SOARES, B. G.; DE SOUZA, N. Â.; DARIO, X. P. Química Orgânica: Teoria e Técnicas de Preparação, purificação e Identificação de Compostos Orgânicos. p (57). Guanabara, 1988. SOUSA, E. T.; LOPES, W. A.; ANDRADE, J. B. DE. Fontes, formação, reatividade e determinação de quinonas na atmosfera. Química Nova, v. 39, n. 4, p. 486 – 495, 2016. SOUSA, M. O. B.; VARGAS, M. D.; MIRANDA, F. S. Theoretical investigation of the photophysical properties of donor-acceptor dyes containing coumarin and naphthoquinone moieties linked by an aminomethylene bridge. Journal of Molecular Structure, v. 1164, p. 260 – 270, 2018. STANCIU, G. D. et al. Alzheimer’s Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules, v. 10, n. 1, p. 40, 2019. 139 TAVAKOLI, H. R.; MOOSAVI, S. M.; BAZGIR, A. ZrOCl2·8H2O as an efficient catalyst for the synthesis of dibenzo [b,i]xanthene-tetraones and fluorescent hydroxyl naphthalene-1,4- diones. Research on Chemical Intermediates, v. 41, n. 5, p. 3041 – 3046, 2015. TAYLOR, W. R. J.; WHITE, N. J. Antimalarial drug toxicity: a review. Drug Safety, v. 27, n. 1, p. 25 – 61, 2004. Atualizações de citação automática estão desativadas. Para ver a bibliografia, clique em Atualizar na aba do Zotero. VASCONCELOS, S. N. S.; DA SILVA, V. H. M.; BRAGA, A. A. C. et al. 3-Alkenyltyrosines Accessed by Suzuki-Miyaura Coupling: A Key Intermediate in the Synthesis and Mechanistic Study of Povarov Multicomponent Reactions. Asian Journal of Organic Chemistry, v. 6, n. 7, p. 913 – 920, 2017. VATANABE, I. P.; MANZINE, P. R.; COMINETTI, M. R. Historic concepts of dementia and Alzheimer’s disease: From ancient times to the present. Revue Neurologique, v. 176, n. 3, p. 140 – 147, 2020. VENUGOPAL, A.; MAHALAXMI, I.; VENKATESH, B.; BALACHANDAR, V. et al. Mitochondrial Calcium Uniporter as a potential therapeutic strategy for Alzheimer’s disease (AD). Acta Neuropsychiatrica, v. 32, p. 1 – 19, 2019. WHO. Demencia 2023. WHO. World Health Organization, 2023. Disponível em: <https://www.who.int/es/news-room/fact-sheets/detail/dementia>. Acesso em: 15 out. 2023. WHO. World malaria report 2024. WHO. World Health Organization, 2024. Disponível em: <file:///C:/Users/Home/Downloads/9789240104440-eng%20(1).pdf>. Acesso em: 20 dez. 2024. WIKSTRÖM, M.; SHARMA, V.; KAILA, V.; HUMMER, G. New Perspectives on Proton Pumping in Cellular Respiration. Chemical Reviews, v. 115, n. 5, p. 2196 – 2221, 2015. XIA, X.; JIANG, Q.; MCDERMOTT, J.; HAN, J.-D. Aging and Alzheimer’s disease: Comparison and associations from molecular to system level. Aging Cell, v. 17, n. 5, p. e12802, 2018. ZHALEH, S.; HAZERI, N.; FAGHIHI, M.; MAGSOODLOU, M. The First Effort for the Preparation of Amidoalkyl Naphthoquinone Skeleton Based on Solvent-Free Multicomponent Reaction. Polycyclic Aromatic Compounds, v. 42, n. 2, p. 558 – 567, 2022. ZHOU, S.; HUANG, G. The biological activities of butyrylcholinesterase inhibitors. Biomedicine & Pharmacotherapy, v. 146, p. 112556, 2022. | pt_BR |
| dc.subject.cnpq | Química | pt_BR |
| Appears in Collections: | Mestrado em Química | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Bruna Caroline Esteves de Souza.pdf | 18.12 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
