Please use this identifier to cite or link to this item:
http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/23660Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Santos, Mayara Carla dos | - |
| dc.date.accessioned | 2025-11-03T16:33:46Z | - |
| dc.date.available | 2025-11-03T16:33:46Z | - |
| dc.date.issued | 2024-04-26 | - |
| dc.identifier.citation | SANTOS, Mayara Carla dos. Novas quinolinas acilguanidínicas planejadas como inibidores seletivos de butirilcolinesterase. 2024.133 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, 2024. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/23660 | - |
| dc.description.abstract | A doença de Alzheimer (DA) é uma doença neurodegenerativa progressiva, caracterizada pela deficiência de neurônios colinérgicos intactos. A butirilcolinesterase (BuChE) e a acetilcolinesterase (AChE) são enzimas do sistema nervoso que catalisam a hidrólise da acetilcolina (ACh), diminuindo os níveis do neurotransmissor e finalizando a comunicação entre as células nervosas. A AChE é ainda o principal alvo terapêutico para o tratamento da DA, no entanto estudos sugerem importante papel da BuChE na hidrólise da ACh em estágios mais avançados da DA, sendo os inibidores seletivos de BuChE vislumbrados como potenciais candidatos para o tratamento desta doença. Este trabalho descreve uma nova série de acilguanidinas quinolínicas (59-62A-D; 63-66A-D) planejadas como inibidores seletivos de BuChE. O planejamento estrutural se baseou nas acilguanidinas indólicas e bromopirrólicas descritas previamente por nosso grupo, as quais se mostraram inibidores seletivos de BuChE. Nos novos derivados o farmacóforo acilguanidina foi mantido e, através do bioisosterismo, propomos a troca do heterociclo principal pelo núcleo quinolínico com diferentes padrões de substituição na posição dois do heterociclo central. A síntese dos compostos se baseou na obtenção dos intermediários-chave terc- butil((metiltio)(quinolina-4-carboxamido) metileno) carbamatos (58a-d) para posterior condensação com as aminas de interesse (A-D) e subsequente reação em meio ácido para remoção do grupo de proteção (N-Boc). Foram sintetizados 20 compostos originais, entre acilguanidinas protegidas (59-62-A-D) e desprotegidas (63-66-A-D), caracterizados por RMN1H e RMN13C. As acilguanidinas desprotegidas fenil-quinolínicas (64A-D) foram idendificadas como inibidores seletivos enzima BuChE (CI50 entre 7 e 12 μM). As duas acilguanidinas com menores valores de CI50 para inibição da BuChE (64C-D) foram avaliadas quanto ao seu perfil antioxidante no modelo do DPPH mas não apresentaram atividade na concentração utilizada (100μM). Estudos de ancoramento molecular possibilitaram a compreensão dos possíveis modos de interação dos compostos ativos com a BuChE e a predição in silico das propriedades ADME e druglike sugere que as novas acilguanidinas quinolínicas tem bom perfil farmacocinético. | pt_BR |
| dc.description.sponsorship | Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | doença de Alzheimer | pt_BR |
| dc.subject | quinolinas | pt_BR |
| dc.subject | acilguanidinas | pt_BR |
| dc.subject | inibidores de butirilcolinesterase | pt_BR |
| dc.subject | Alzheimer's disease | pt_BR |
| dc.subject | quinolines | pt_BR |
| dc.subject | acylguanidines | pt_BR |
| dc.subject | butyrylcholinesterase inhibitors. | pt_BR |
| dc.title | Novas quinolinas acilguanidínicas planejadas como inibidores seletivos de butirilcolinesterase | pt_BR |
| dc.title.alternative | Novel acyguanidine quinolines designed as selective butyrylcholinesterase inhibitors | en |
| dc.type | Dissertação | pt_BR |
| dc.description.abstractOther | Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by a deficiency of intact cholinergic neurons. Butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) are nervous system enzymes that catalyze the hydrolysis of acetylcholine (ACh), reducing neurotransmitter levels and ending communication between nerve cells. AChE is still the main therapeutic target for the treatment of AD, however studies suggest an important role for BuChE in the hydrolysis of ACh in more advanced stages of AD, with selective BuChE inhibitors being seen as potential candidates for the treatment of this disease. This work describes a new series of quinolinic acylguanidines (59-62A-D; 63-66A-D) designed as selective inhibitors of BuChE. Structural design was based on the indole and bromopyrrolic acylguanidines previously described by our group, which were shown to be selective inhibitors of BuChE. In the new derivatives, the acylguanidine pharmacophore was maintained and, through bioisosterism, we propose the exchange of the main heterocycle for the quinoline nucleus with different substitution patterns in position two of the central heterocycle. The synthesis of the compounds was based on obtaining the key intermediates tert-butyl((methylthio)(quinoline-4- carboxamido) methylene) carbamates (58a-d) for subsequent condensation with the amines of interest (A-D) and subsequent reaction in an acidic medium to remove the protecting group ( N-Boc). 20 original compounds were synthesized, including protected (59-62-A- D) and free acylguanidines (63-66-A-D), characterized by H1NMR and DEPTQ. The free phenyl-quinoline acylguanidines (64A-D) were identified as selective inhibitors of the BuChE enzyme (IC50 between 7 and 12 μM). The two acylguanidines with the lowest IC50 values for BuChE inhibition (64C-D) were evaluated for their antioxidant profile in the DPPH model, but showed no activity at tested concentration (110μM). Molecular docking studies made it possible to understand the possible modes of interaction of active compounds with BuChE and in silico prediction of ADME and druglike properties suggests that the new quinolinic acylguanidines have a good pharmacokinetic profile. | en |
| dc.contributor.advisor1 | Lacerda, Renata Barbosa | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-6185-3408 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2068820144272983 | pt_BR |
| dc.contributor.advisor-co1 | Kümmerle, Arthur Eugen | - |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/5598000938584486 | pt_BR |
| dc.contributor.referee1 | Lacerda, Renata Barbosa | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-6185-3408 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/2068820144272983 | pt_BR |
| dc.contributor.referee2 | Santos, Claudio Eduardo Rodrigues dos | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0003-0129-2802 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/0890271430013129 | pt_BR |
| dc.contributor.referee3 | Alves, Marina Amaral | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0002-8188-5554 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/0945374845574106 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/2115370615231225 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Química | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Química | pt_BR |
| dc.relation.references | AJANI, O. O.; IYAYE, K. T.; ADEMOSUN, O. T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs - a review. RSC AdvancesRoyal Society of Chemistry, , 24 jun. 2022. AL-GHRAIYBAH, N. F. et al. Glial Cell-Mediated Neuroinflammation in Alzheimer ’ s Disease. International Journal of Molecular Sciences, p. 1–29, 2022. ALI, R.; GUPTA, G. DAS; CHAWLA, P. A. Aducanumab: A new hope in Alzheimer’s disease. Health Sciences Review, v. 4, p. 100039, set. 2022. ALQAHTANI, T. et al. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis -An updated review. MitochondrionElsevier B.V., , 1 jul. 2023. ARNDT, J. W. et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Scientific Reports, v. 8, n. 1, 1 dez. 2018. ARYA, A. et al. Acetylcholinesterase inhibitory potential of various sesquiterpene analogues for alzheimer’s disease therapy. BiomoleculesMDPI AG, , 1 mar. 2021. BITRA, V. R. et al. Tau trajectory in Alzheimer’s disease: Evidence from the connectome-based computational models. Brain Research BulletinElsevier Inc., , 15 out. 2023. CARRILLO-HERMOSILLA, FERNANDO; ALONSO-MORENO, CARLOS;ANTIÑOLO, ANTONIO AND OTERO, ANTONIO. Guanidines : from classical approaches to efficient catalytic syntheses This review focuses on the metal- mediated catalytic addition of amines to carbodiimides as an atom-economical alternative to the classical synthesis of. 2014. CAVALCANTE, S. F. DE A. et al. Acetylcholinesterase: The “Hub” for Neurodegenerative diseases and chemical weapons convention. Biomolecules, v. 10, n. 3, 1 mar. 2020. CHEN, L. L. et al. The metal ion hypothesis of Alzheimer’s disease and the anti- neuroinflammatory effect of metal chelators. Bioorganic ChemistryAcademic Press Inc., , 1 fev. 2023. DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, v. 7, n. January, p. 1–13, 2017a. 63 DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, v. 7, n. January, p. 1–13, 2017b. DE SOUZA, G. A. et al. Discovery of novel dual-active 3-(4-(dimethylamino)phenyl)-7- aminoalcoxy-coumarin as potent and selective acetylcholinesterase inhibitor and antioxidant. Journal of Enzyme Inhibition and Medicinal Chemistry, v. 34, n. 1, p. 631– 637, 1 jan. 2019. ELLMAN, G. L. et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, v. 7, n. 2, p. 88–95, 1961. FASAE, K. D. et al. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. Journal of Trace Elements in Medicine and BiologyElsevier GmbH, , 1 set. 2021. FERREIRA, J. P. S. et al. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). European Journal of Medicinal Chemistry, v. 221, 2021. GHOLAMI, A. Alzheimer’s disease: The role of proteins in formation, mechanisms, and new therapeutic approaches. Neuroscience LettersElsevier Ireland Ltd, , 20 nov. 2023. GOMES, A. R. et al. Synthetic and natural guanidine derivatives as antitumor and antimicrobial agents: A review. Bioorganic ChemistryAcademic Press Inc., , 1 set. 2023. GREIG, N. H. et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer-amyloid peptide in rodent. [s.l: s.n.]. Disponível em: <www.pnas.orgcgidoi10.1073pnas.0508575102>. HELEM F. RIBEIRO; JÉSSICA SCARLET F. DOS SANTOS; JULYANNE N. DE SOUZA. Doença de Alzheimer de início precoce (DAIP): características neuropatológicas e variantes genéticas associadas. 2021. HICKEY, S. M. et al. An optimised synthesis of 2-[2,3-Bis(tert - butoxycarbonyl)guanidino] ethylamine. Synlett, v. 23, n. 12, p. 1779–1782, 2012. JASIECKI, J.; TARGOŃSKA, M.; WASĄG, B. The role of butyrylcholinesterase and iron in the regulation of cholinergic network and cognitive dysfunction in alzheimer’s disease pathogenesis. International Journal of Molecular SciencesMDPI AG, , 2 fev. 2021. JUSTIN M. LONG, D. M. H. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Physiology & behavior, v. 176, n. 3, p. 139–148, 2020. KAMALJEET et al. Emerging role of antioxidants in Alzheimer’s disease: Insight into physiological, pathological mechanisms and management. Pharmaceutical Science Advances, v. 2, p. 100021, dez. 2024. 64 KATRITZKY, A. R.; ROGOVOY, B. V. Recent developments in guanylating agents. Arkivoc, v. 2005, n. 4, p. 49–87, 2005. KIM, S. H.; SEMENYA, D.; CASTAGNOLO, D. Antimicrobial drugs bearing guanidine moieties: A review. European Journal of Medicinal ChemistryElsevier Masson s.r.l., , 15 abr. 2021. LEUNG, M. R. et al. Cryo-EM structure of the native butyrylcholinesterase tetramer reveals a dimer of dimers stabilized by a superhelical assembly. Proceedings of the National Academy of Sciences of the United States of America, v. 115, n. 52, p. 13270– 13275, 26 dez. 2018. LI, Z. H. et al. SAR studies of quinoline and derivatives as potential treatments for Alzheimer’s disease. Arabian Journal of ChemistryElsevier B.V., , 1 fev. 2023. LIAO, C. et al. Phenylquinoline transient receptor potential vanilloid 1 antagonists for the treatment of pain: Discovery of 1-(2-phenylquinoline-4-carbonyl)-N-(4- (trifluoromethyl)phenyl)pyrrolidine-3-carboxamide. Bioorganic and Medicinal Chemistry, v. 26, n. 4, p. 845–854, 15 fev. 2018. LIMA, L.; BARREIRO, E. Bioisosterism: A Useful Strategy for Molecular Modification and Drug Design. Current Medicinal Chemistry, v. 12, n. 1, p. 23–49, 2012. LIU, W. et al. Chemical genetic activation of the cholinergic basal forebrain hippocampal circuit rescues memory loss in Alzheimer’s disease. Alzheimer’s Research and Therapy, v. 14, n. 1, p. 1–20, 2022. MAIA, M. A.; SOUSA, E. BACE-1 and γ-secretase as therapeutic targets for alzheimer’s disease. Pharmaceuticals, v. 12, n. 1, p. 1–31, 2019. MASSON, P. et al. Meta-analyses in Prevention and Treatment of Urinary Tract Infections. Infectious Disease Clinics of North America, jun. 2009. MASSOULIÉ, J.; PZZEMENTI. MOLECULAR AND CELLULAR BIOLOGY OF CHOLINESTERASES. Progress in Neurobiolog, v. Vol. 41, p. 31–91, 1993. MATADA, B. S.; PATTANASHETTAR, R.; YERNALE, N. G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorganic and Medicinal Chemistry, v. 32, n. December 2020, p. 115973, 2021. MOHASSAB, A. M. M. et al. Design and synthesis of new quinoline-ester/-amide derivatives as potent antiproliferative agent targeting EGFR and BRAFV600E kinases. Journal of Molecular Structure, v. 1297, 5 fev. 2024. MOORE, K. B. E.; HUNG, T. J.; FORTIN, J. S. Hyperphosphorylated tau (p-tau) and drug discovery in the context of Alzheimer’s disease and related tauopathies. Drug Discovery Today Elsevier Ltd, , 1 mar. 2023. NADY, D. S.; BAKOWSKY, U.; FAHMY, S. A. Recent advances in brain delivery of synthetic and natural nano therapeutics: Reviving hope for Alzheimer’s disease patients. Journal of Drug Delivery Science and TechnologyEditions de Sante, , 1 nov. 2023. 65 NICOLET, Y. et al. Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. Journal of Biological Chemistry, v. 278, n. 42, p. 41141–41147, 17 out. 2003. RAJ ARAN, K. The Aging Brain: Impact of Iron Metal in Neurotoxicity. Biomedical Journal of Scientific & Technical Research, v. 52, n. 3, 24 ago. 2023. RIUS-PÉREZ, S. et al. Vascular pathology: Cause or effect in Alzheimer disease? NeurologiaSpanish Society of Neurology, , 1 mar. 2018. SABRINA NEVES SANTOS, GABRIELA ALVES DE SOUZA, T. M. P.; DAIANA PORTELLA FRANCO, CATARINA DE NIGRIS DEL CISTIA, C. M. R. S.; RENATA BARBOSA LACERDAAB AND ARTHUR EUGEN KÜMMERLE. Regioselective microwave synthesis and derivatization of 1,5-diaryl-3-amino-1,2,4-triazoles and a study of their cholinesterase inhibition properties. , 2019. SANTOS, S. N. et al. Regioselective microwave synthesis and derivatization of 1,5-diaryl- 3-amino-1,2,4-triazoles and a study of their cholinesterase inhibition properties. RSC Advances, v. 9, n. 35, p. 20356–20369, 2019. SARAVANAN, K. et al. Binding studies of known molecules with acetylcholinesterase and bovine serum albumin: A comparative view. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, v. 259, 5 out. 2021. SAROJA, S. R. et al. Differential expression of tau species and the association with cognitive decline and synaptic loss in Alzheimer’s disease. Alzheimer’s and Dementia, v. 18, n. 9, p. 1602–1615, 2022a. SAROJA, S. R. et al. Differential expression of tau species and the association with cognitive decline and synaptic loss in Alzheimer’s disease. Alzheimer’s and Dementia, v. 18, n. 9, p. 1602–1615, 2022b. SHVEKHGEIMER, M. G.-A. The Pfitzinger Reaction. ChemInform, v. 35, n. 48, p. 257– 294, 2004. SILVERTHORN, D. UNGLAUB. Fisiologia Humana: Uma Abordagem Integrada. 7th. ed. [s.l: s.n.]. SINGH, B. et al. Alzheimer’s disease current therapies, novel drug delivery systems and future directions for better disease management. Journal of Controlled ReleaseElsevier B.V., , 1 mar. 2024. SONAWANE, H. R. et al. Versatile applications of transition metal incorporating quinoline Schiff base metal complexes: An overview. European Journal of Medicinal ChemistryElsevier Masson s.r.l., , 5 out. 2023. TARAZI, H. et al. Design, synthesis and SAR analysis of potent BACE1 inhibitors: Possible lead drug candidates for Alzheimer’s disease. European Journal of Medicinal Chemistry, v. 125, p. 1213–1224, 2017. TUZIMSKI, T.; PETRUCZYNIK, A. Determination of Anti-Alzheimer’s Disease Activity of Selected Plant Ingredients. MoleculesMDPI, , 1 maio 2022. 66 TYLISZCZAK, M. et al. Does a pickle a day keep Alzheimer’s away? Fermented food in Alzheimer’s disease: A review. Experimental GerontologyElsevier Inc., , 1 dez. 2023. VERBANAC, D. et al. Synthesis and evaluation of antibacterial and antioxidant activity of novel 2-phenyl-quinoline analogs derivatized at position 4 with aromatically substituted 4H-1,2,4-triazoles. Journal of Enzyme Inhibition and Medicinal Chemistry, v. 31, n. June, p. 104–110, 2016. WALCZAK-NOWICKA, Ł. J.; HERBET, M. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. International Journal of Molecular SciencesMDPI, , 1 set. 2021. ZHU J, WU CF, LI X, et al. Synthesis, biological evaluation and molecular modeling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg Med Chem. 2013;21(14):4218-4224. | pt_BR |
| dc.subject.cnpq | Química | pt_BR |
| dc.subject.cnpq | Química | pt_BR |
| Appears in Collections: | Mestrado em Química | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Mayara Carla dos Santos - 2024.pdf | 6.77 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
